Combining Philosophers

Ideas for Hermarchus, Albert Einstein and Phil Dowe

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


5 ideas

26. Natural Theory / C. Causation / 1. Causation
Einstein took causation to be the bedrock of physics [Einstein, by Coveney/Highfield]
     Full Idea: It is difficult to overplay Einstein's commitment to the concept of causality as the bedrock of physics.
     From: report of Albert Einstein (works [1915]) by P Coveney / R Highfield - The Arrow of Time 3 'problem'
     A reaction: I normally avoid arguments from authority, but this carries a bit of weight (e.g. when Russell tries to oppose it). What happens to Einstein's theories if you remove causation from them?
26. Natural Theory / C. Causation / 4. Naturalised causation
Causation interaction is an exchange of conserved quantities, such as mass, energy or charge [Dowe, by Psillos]
     Full Idea: Dowe argues that a 'causal process' is a world line of an object with a conserved quantity (such as mass, energy, momentum, charge), and a 'causal interaction' is an exchange between two such objects.
     From: report of Phil Dowe (Physical Causation [2000]) by Stathis Psillos - Causation and Explanation §4.4
     A reaction: This looks very promising. Nice distinction between causal process and causal interaction. 'Conserved quantities' is better physics than just 'energy'. We can hand causation over to the scientist?
Physical causation consists in transference of conserved quantities [Dowe, by Mumford/Anjum]
     Full Idea: For Dowe physical causation consists in transference of conserved quantities.
     From: report of Phil Dowe (Physical Causation [2000]) by S.Mumford/R.Lill Anjum - Getting Causes from Powers 10.2
     A reaction: [see Psillos 2002 on this] This is evidently a modification of the idea of physical causation as energy-transfer, but narrowing it down to exclude trivial cases. I guess. Need better physics.
26. Natural Theory / D. Laws of Nature / 1. Laws of Nature
General relativity assumes laws of nature are the same in all frames of reference [Einstein, by Close]
     Full Idea: Einstein came to general relativity from the principles that the laws of nature are the same in all frames of reference.
     From: report of Albert Einstein (works [1915]) by Frank Close - Theories of Everything 5 'Cosmological'
     A reaction: I wish physicists would tell us a bit more about the ontological status of the 'laws of nature'. Presumably they are not supernatural, so there is an aspect of nature which is constant in all frames of reference. Explanation please.
26. Natural Theory / D. Laws of Nature / 9. Counterfactual Claims
Dowe commends the Conserved Quantity theory as it avoids mention of counterfactuals [Dowe, by Psillos]
     Full Idea: Dowe commends the Conserved Quantity theory because it avoids any mention of counterfactuals.
     From: report of Phil Dowe (Physical Causation [2000]) by Stathis Psillos - Causation and Explanation §4.4
     A reaction: Clearly the truth of a counterfactual is quite a problem for an empiricist/scientist, but one needs to distinguish between reality and our grasp of it. We commit ourselves to counterfactuals, even if causation is transfer of conserved quantities.