Combining Philosophers

Ideas for H.Putnam/P.Oppenheim, Bernard Linsky and Bertrand Russell

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


27 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
The mortality of Socrates is more certain from induction than it is from deduction [Russell]
     Full Idea: We would do better to go straight from the evidence that some men have died to the mortality of Socrates, than to go via 'all men are mortal', for the probability that Socrates is mortal is greater than the probability that all men are mortal.
     From: Bertrand Russell (Problems of Philosophy [1912], Ch. 7)
     A reaction: Russell claims that deduction should stick to a priori truth, and induction is best for the real world. Interesting. To show that something is a member of a set (e.g. planets) you need an awful lot of knowledge of the set.
The Darapti syllogism is fallacious: All M is S, all M is P, so some S is P' - but if there is no M? [Russell]
     Full Idea: Some moods of the syllogism are fallacious, e.g. 'Darapti': 'All M is S, all M is P, therefore some S is P', which fails if there is no M.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XV)
     A reaction: This critique rests on the fact that the existential quantifier entails some existence, but the universal quantifier does not.
4. Formal Logic / C. Predicate Calculus PC / 2. Tools of Predicate Calculus / e. Existential quantifier ∃
There are four experiences that lead us to talk of 'some' things [Russell]
     Full Idea: Propositions about 'some' arise, in practice, in four ways: as generalisations of disjunctions; when an instance suggests compatibility of terms we thought incompatible; as steps to a generalisation; and in cases of imperfect memory.
     From: Bertrand Russell (An Inquiry into Meaning and Truth [1940], 5)
     A reaction: Modern logicians seem to have no interest in the question Russell is investigating here, but I love his attempt, however vague the result, to connect logic to real experience and thought.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null class is a fiction [Russell]
     Full Idea: The null class is a fiction.
     From: Bertrand Russell (The Principles of Mathematics [1903], §079)
     A reaction: This does not commit him to regarding all classes as fictions - though he seems to have eventually come to believe that. The null class seems to have a role something like 'Once upon a time...' in story-telling. You can then tell truth or fiction.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
Normally a class with only one member is a problem, because the class and the member are identical [Russell]
     Full Idea: With the ordinary view of classes you would say that a class that has only one member was the same as that one member; that will land you in terrible difficulties, because in that case that one member is a member of that class, namely, itself.
     From: Bertrand Russell (The Philosophy of Logical Atomism [1918], §VII)
     A reaction: The problem (I think) is that classes (sets) were defined by Frege as being identical with their members (their extension). With hindsight this may have been a mistake. The question is always 'why is that particular a member of that set?'
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We can enumerate finite classes, but an intensional definition is needed for infinite classes [Russell]
     Full Idea: We know a great deal about a class without enumerating its members …so definition by extension is not necessary to knowledge about a class ..but enumeration of infinite classes is impossible for finite beings, so definition must be by intension.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: Presumably mathematical induction (which keeps apply the rule to extend the class) will count as an intension here.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Members define a unique class, whereas defining characteristics are numerous [Russell]
     Full Idea: There is only one class having a given set of members, whereas there are always many different characteristics by which a given class may be defined.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
We may assume that there are infinite collections, as there is no logical reason against them [Russell]
     Full Idea: There is no logical reason against infinite collections, and we are therefore justified, in logic, in investigating the hypothesis that there are such collections.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VIII)
Infinity says 'for any inductive cardinal, there is a class having that many terms' [Russell]
     Full Idea: The Axiom of Infinity may be enunciated as 'If n be any inductive cardinal number, there is at least one class of individuals having n terms'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIII)
     A reaction: So for every possible there exists a set of terms for it. Notice that they are 'terms', not 'objects'. We must decide whether we are allowed terms which don't refer to real objects.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The British parliament has one representative selected from each constituency [Russell]
     Full Idea: We have a class of representatives, who make up our Parliament, one being selected out of each constituency.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: You can rely on Russell for the clearest illustrations of these abstract ideas. He calls the Axiom of Choice the 'Multiplicative' Axiom.
Choice shows that if any two cardinals are not equal, one must be the greater [Russell]
     Full Idea: The [Axiom of Choice] is also equivalent to the assumption that of any two cardinals which are not equal, one must be the greater.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: It is illuminating for the uninitiated to learn that this result can't be taken for granted (with infinite cardinals).
Choice is equivalent to the proposition that every class is well-ordered [Russell]
     Full Idea: Zermelo has shown that [the Axiom of Choice] is equivalent to the proposition that every class is well-ordered, i.e. can be arranged in a series in which every sub-class has a first term (except, of course, the null class).
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: Russell calls Choice the 'Multiplicative' Axiom.
We can pick all the right or left boots, but socks need Choice to insure the representative class [Russell]
     Full Idea: Among boots we distinguish left and right, so we can choose all the right or left boots; with socks no such principle suggests itself, and we cannot be sure, without the [Axiom of Choice], that there is a class consisting of one sock from each pair.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XII)
     A reaction: A deservedly famous illustration of a rather tricky part of set theory.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: there is always a function of the lowest possible order in a given level [Russell, by Bostock]
     Full Idea: Russell's Axiom of Reducibility states that to any propositional function of any order in a given level, there corresponds another which is of the lowest possible order in the level. There corresponds what he calls a 'predicative' function of that level.
     From: report of Bertrand Russell (Substitutional Classes and Relations [1906]) by David Bostock - Philosophy of Mathematics 8.2
Reducibility: a family of functions is equivalent to a single type of function [Russell]
     Full Idea: The Axiom of Reducibility says 'There is a type of a-functions such that, given any a-function, it is formally equivalent to some function of the type in question'. ..It involves all that is really essential in the theory of classes. But is it true?
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: I take this to say that in the theory of types, it is possible to reduce each level of type down to one type.
Reducibility says any impredicative function has an appropriate predicative replacement [Linsky,B]
     Full Idea: The Axiom of Reducibility avoids impredicativity, by asserting that for any predicate of given arguments defined by quantifying over higher-order functions or classes, there is another co-extensive but predicative function of the same type of arguments.
     From: Bernard Linsky (Russell's Metaphysical Logic [1999], 1)
     A reaction: Eventually the axiom seemed too arbitrary, and was dropped. Linsky's book explores it.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'no classes' theory says the propositions just refer to the members [Russell]
     Full Idea: The contention of the 'no classes' theory is that all significant propositions concerning classes can be regarded as propositions about all or some of their members.
     From: Bertrand Russell (On 'Insolubilia' and their solution [1906], p.200)
     A reaction: Apparently this theory has not found favour with later generations of theorists. I see it in terms of Russell trying to get ontology down to the minimum, in the spirit of Goodman and Quine.
Propositions about classes can be reduced to propositions about their defining functions [Russell]
     Full Idea: It is right (in its main lines) to say that there is a reduction of propositions nominally about classes to propositions about their defining functions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVII)
     A reaction: The defining functions will involve the theory of types, in order to avoid the paradoxes of naïve set theory. This is Russell's strategy for rejecting the existence of sets.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Russell invented the naïve set theory usually attributed to Cantor [Russell, by Lavine]
     Full Idea: Russell was the inventor of the naïve set theory so often attributed to Cantor.
     From: report of Bertrand Russell (The Principles of Mathematics [1903]) by Shaughan Lavine - Understanding the Infinite I
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
Order rests on 'between' and 'separation' [Russell]
     Full Idea: The two sources of order are 'between' and 'separation'.
     From: Bertrand Russell (The Principles of Mathematics [1903], §204)
Order depends on transitive asymmetrical relations [Russell]
     Full Idea: All order depends upon transitive asymmetrical relations.
     From: Bertrand Russell (The Principles of Mathematics [1903], §208)
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Russell's proposal was that only meaningful predicates have sets as their extensions [Russell, by Orenstein]
     Full Idea: Russell's solution (in the theory of types) consists of restricting the principle that every predicate has a set as its extension so that only meaningful predicates have sets as their extensions.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Alex Orenstein - W.V. Quine Ch.3
     A reaction: There might be a chicken-and-egg problem here. How do you decide the members of a set (apart from ostensively) without deciding the predicate(s) that combine them?
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Classes can be reduced to propositional functions [Russell, by Hanna]
     Full Idea: Russell held that classes can be reduced to propositional functions.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Robert Hanna - Rationality and Logic 2.4
     A reaction: The exact nature of a propositional function is disputed amongst Russell scholars (though it is roughly an open sentence of the form 'x is red').
Classes, grouped by a convenient property, are logical constructions [Russell]
     Full Idea: Classes or series of particulars, collected together on account of some property which makes it convenient to be able to speak of them as wholes, are what I call logical constructions or symbolic fictions.
     From: Bertrand Russell (The Ultimate Constituents of Matter [1915], p.125)
     A reaction: When does a construction become 'logical' instead of arbitrary? What is it about a property that makes it 'convenient'? At this point Russell seems to have built his ontology on classes, and the edifice was crumbling, thanks to Wittgenstein.
Classes are logical fictions, and are not part of the ultimate furniture of the world [Russell]
     Full Idea: The symbols for classes are mere conveniences, not representing objects called 'classes'. Classes are in fact logical fictions; they cannot be regarded as part of the ultimate furniture of the world.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], Ch.18), quoted by Stewart Shapiro - Thinking About Mathematics 5.2
     A reaction: I agree. For 'logical fictions' read 'abstractions'. To equate abstractions with fictions is to underline the fact that they are a human creation. They are either that or platonic objects - there is no middle way.
I gradually replaced classes with properties, and they ended as a symbolic convenience [Russell]
     Full Idea: My original use of classes was gradually more and more replaced by properties, and in the end disappeared except as a symbolic convenience.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.14)
     A reaction: I wish I knew what properties are. On the whole, though, I agree with this, because it is more naturalistic. We may place things in classes because of their properties, and this means there are natural classes, but classes can't have a life of their own.
4. Formal Logic / G. Formal Mereology / 1. Mereology
The part-whole relation is ultimate and indefinable [Russell]
     Full Idea: The relation of whole and part is, it would seem, an indefinable and ultimate relation, or rather several relations, often confounded, of which one at least is indefinable.
     From: Bertrand Russell (The Principles of Mathematics [1903], §135)
     A reaction: This is before anyone had produced a mathematical account of mereology (qv).