Combining Philosophers

Ideas for H.Putnam/P.Oppenheim, David Bostock and Shaughan Lavine

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


33 ideas

4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
     Full Idea: Venn Diagrams are a traditional method to test validity of syllogisms. There are three interlocking circles, one for each predicate, thus dividing the universe into eight possible basic elementary quantifications. Is the conclusion in a compartment?
     From: David Bostock (Intermediate Logic [1997], 3.8)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
     Full Idea: 'Disjunctive Normal Form' (DNF) is rearranging the occurrences of ∧ and ∨ so that no conjunction sign has any disjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
     Full Idea: 'Conjunctive Normal Form' (CNF) is rearranging the occurrences of ∧ and ∨ so that no disjunction sign has any conjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
     Full Idea: The Principle of Disjunction says that Γ,φ∨ψ |= iff Γ,φ |= and Γ,ψ |=.
     From: David Bostock (Intermediate Logic [1997], 2.5.G)
     A reaction: That is, a disjunction leads to a contradiction if they each separately lead to contradictions.
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
     Full Idea: The Principle of Assumptions says that any formula entails itself, i.e. φ |= φ. The principle depends just upon the fact that no interpretation assigns both T and F to the same formula.
     From: David Bostock (Intermediate Logic [1997], 2.5.A)
     A reaction: Thus one can introduce φ |= φ into any proof, and then use it to build more complex sequents needed to attain a particular target formula. Bostock's principle is more general than anything in Lemmon.
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
     Full Idea: The Principle of Thinning says that if a set of premisses entails a conclusion, then adding further premisses will still entail the conclusion. It is 'thinning' because it makes a weaker claim. If γ|=φ then γ,ψ|= φ.
     From: David Bostock (Intermediate Logic [1997], 2.5.B)
     A reaction: It is also called 'premise-packing'. It is the characteristic of a 'monotonic' logic - where once something is proved, it stays proved, whatever else is introduced.
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
     Full Idea: The Conditional Principle says that Γ |= φ→ψ iff Γ,φ |= ψ. With the addition of negation, this implies φ,φ→ψ |= ψ, which is 'modus ponens'.
     From: David Bostock (Intermediate Logic [1997], 2.5.H)
     A reaction: [Second half is in Ex. 2.5.4]
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
     Full Idea: The Principle of Cutting is the general point that entailment is transitive, extending this to cover entailments with more than one premiss. Thus if γ |= φ and φ,Δ |= ψ then γ,Δ |= ψ. Here φ has been 'cut out'.
     From: David Bostock (Intermediate Logic [1997], 2.5.C)
     A reaction: It might be called the Principle of Shortcutting, since you can get straight to the last conclusion, eliminating the intermediate step.
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
     Full Idea: The Principle of Negation says that Γ,¬φ |= iff Γ |= φ. We also say that φ,¬φ |=, and hence by 'thinning on the right' that φ,¬φ |= ψ, which is 'ex falso quodlibet'.
     From: David Bostock (Intermediate Logic [1997], 2.5.E)
     A reaction: That is, roughly, if the formula gives consistency, the negation gives contradiction. 'Ex falso' says that anything will follow from a contradiction.
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
     Full Idea: The Principle of Conjunction says that Γ |= φ∧ψ iff Γ |= φ and Γ |= ψ. This implies φ,ψ |= φ∧ψ, which is ∧-introduction. It is also implies ∧-elimination.
     From: David Bostock (Intermediate Logic [1997], 2.5.F)
     A reaction: [Second half is Ex. 2.5.3] That is, if they are entailed separately, they are entailed as a unit. It is a moot point whether these principles are theorems of propositional logic, or derivation rules.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
     Full Idea: A 'free' logic is one in which names are permitted to be empty. A 'universally free' logic is one in which the domain of an interpretation may also be empty.
     From: David Bostock (Intermediate Logic [1997], 8.6)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
     Full Idea: The Axiom of Replacement (or the Axiom of Subsets, 'Aussonderung', Fraenkel 1922) in effect enforces the idea that 'limitation of size' is a crucial factor when deciding whether a proposed set or does not not exist.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)