Combining Philosophers

Ideas for Herodotus, Keith Hossack and Charles Parsons

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


9 ideas

4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modal logic is not an extensional language [Parsons,C]
     Full Idea: Modal logic is not an extensional language.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.159 n8)
     A reaction: [I record this for investigation. Possible worlds seem to contain objects]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The old problems with the axiom of choice are probably better ascribed to the law of excluded middle [Parsons,C]
     Full Idea: The difficulties historically attributed to the axiom of choice are probably better ascribed to the law of excluded middle.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §2)
     A reaction: The law of excluded middle was a target for the intuitionists, so presumably the debate went off in that direction.
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
     Full Idea: We might reduce sets to ordinal numbers, thereby reversing the standard set-theoretical reduction of ordinals to sets.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
     A reaction: He has demonstrated that there are as many ordinals as there are sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
     Full Idea: Extensional mereology defs: 'distinct' things have no parts in common; a 'fusion' has some things all of which are parts, with no further parts. Axioms: (transitivity) a part of a part is part of the whole; (sums) any things have a unique fusion.
     From: Keith Hossack (Plurals and Complexes [2000], 5)