Combining Philosophers

Ideas for Paul Ricoeur, Keith Hossack and Volker Halbach

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


11 ideas

4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
In Strong Kleene logic a disjunction just needs one disjunct to be true [Halbach]
     Full Idea: In Strong Kleene logic a disjunction of two sentences is true if at least one disjunct is true, even when the other disjunct lacks a truth value.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 18)
     A reaction: This sounds fine to me. 'Either I'm typing this or Homer had blue eyes' comes out true in any sensible system.
In Weak Kleene logic there are 'gaps', neither true nor false if one component lacks a truth value [Halbach]
     Full Idea: In Weak Kleene Logic, with truth-value gaps, a sentence is neither true nor false if one of its components lacks a truth value. A line of the truth table shows a gap if there is a gap anywhere in the line, and the other lines are classical.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 18)
     A reaction: This will presumably apply even if the connective is 'or', so a disjunction won't be true, even if one disjunct is true, when the other disjunct is unknown. 'Either 2+2=4 or Lot's wife was left-handed' sounds true to me. Odd.
4. Formal Logic / F. Set Theory ST / 1. Set Theory
To prove the consistency of set theory, we must go beyond set theory [Halbach]
     Full Idea: The consistency of set theory cannot be established without assumptions transcending set theory.
     From: Volker Halbach (Axiomatic Theories of Truth (2005 ver) [2005], 2.1)
Every attempt at formal rigour uses some set theory [Halbach]
     Full Idea: Almost any subject with any formal rigour employs some set theory.
     From: Volker Halbach (Axiomatic Theories of Truth [2011], 4.1)
     A reaction: This is partly because mathematics is often seen as founded in set theory, and formal rigour tends to be mathematical in character.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
     Full Idea: We might reduce sets to ordinal numbers, thereby reversing the standard set-theoretical reduction of ordinals to sets.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
     A reaction: He has demonstrated that there are as many ordinals as there are sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
     Full Idea: Extensional mereology defs: 'distinct' things have no parts in common; a 'fusion' has some things all of which are parts, with no further parts. Axioms: (transitivity) a part of a part is part of the whole; (sums) any things have a unique fusion.
     From: Keith Hossack (Plurals and Complexes [2000], 5)