Combining Philosophers

Ideas for Stilpo, Hilary Putnam and William W. Tait

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


6 ideas

4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
In type theory, 'x ∈ y' is well defined only if x and y are of the appropriate type [Putnam]
     Full Idea: In the theory of types, 'x ∈ y' is well defined only if x and y are of the appropriate type, where individuals count as the zero type, sets of individuals as type one, sets of sets of individuals as type two.
     From: Hilary Putnam (Philosophy of Logic [1971], Ch.6)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null set was doubted, because numbering seemed to require 'units' [Tait]
     Full Idea: The conception that what can be numbered is some object (including flocks of sheep) relative to a partition - a choice of unit - survived even in the late nineteenth century in the form of the rejection of the null set (and difficulties with unit sets).
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IX)
     A reaction: This old view can't be entirely wrong! Frege makes the point that if asked to count a pack of cards, you must decide whether to count cards, or suits, or pips. You may not need a 'unit', but you need a concept. 'Units' name concept-extensions nicely!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
We understand some statements about all sets [Putnam]
     Full Idea: We seem to understand some statements about all sets (e.g. 'for every set x and every set y, there is a set z which is the union of x and y').
     From: Hilary Putnam (Mathematics without Foundations [1967], p.308)
     A reaction: His example is the Axiom of Choice. Presumably this is why the collection of all sets must be referred to as a 'class', since we can talk about it, but cannot define it.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
The Löwenheim-Skolem theorems show that whether all sets are constructible is indeterminate [Putnam, by Shapiro]
     Full Idea: Putnam claims that the Löwenheim-Skolem theorems indicate that there is no 'fact of the matter' whether all sets are constructible.
     From: report of Hilary Putnam (Models and Reality [1977]) by Stewart Shapiro - Foundations without Foundationalism
     A reaction: [He refers to the 4th and 5th pages of Putnam's article] Shapiro offers (p.109) a critique of Putnam's proposal.
V = L just says all sets are constructible [Putnam]
     Full Idea: V = L just says all sets are constructible. L is the class of all constructible sets, and V is the universe of all sets.
     From: Hilary Putnam (Models and Reality [1977], p.425)
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
We can have a series with identical members [Tait]
     Full Idea: Why can't we have a series (as opposed to a linearly ordered set) all of whose members are identical, such as (a, a, a...,a)?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VII)
     A reaction: The question is whether the items order themselves, which presumably the natural numbers are supposed to do, or whether we impose the order (and length) of the series. What decides how many a's there are? Do we order, or does nature?