Combining Philosophers

Ideas for Hans Reichenbach, James Cargile and Melvin Fitting

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


3 ideas

5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Saying 'they can become a set' is a tautology, because reference to 'they' implies a collection [Cargile]
     Full Idea: If the rule is asserted 'Given any well-determined objects, they can be collected into a set by an application of the 'set of' operation', then on the usual account of 'they' this is a tautology. Collection comes automatically with this form of reference.
     From: James Cargile (Paradoxes: Form and Predication [1979], p.115), quoted by Oliver,A/Smiley,T - What are Sets and What are they For? Intro
     A reaction: Is this a problem? Given they are well-determined (presumably implying countable) there just is a set of them. That's what set theory is, I thought. Of course, the iterative view talks of 'constructing' the sets, but the construction looks unstoppable.