Combining Philosophers

Ideas for Hugo Grotius, Pherecydes and Stewart Shapiro

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


54 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
There is no 'correct' logic for natural languages [Shapiro]
     Full Idea: There is no question of finding the 'correct' or 'true' logic underlying a part of natural language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: One needs the context of Shapiro's defence of second-order logic to see his reasons for this. Call me romantic, but I retain faith that there is one true logic. The Kennedy Assassination problem - can't see the truth because drowning in evidence.
Logic is the ideal for learning new propositions on the basis of others [Shapiro]
     Full Idea: A logic can be seen as the ideal of what may be called 'relative justification', the process of coming to know some propositions on the basis of others.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.3.1)
     A reaction: This seems to be the modern idea of logic, as opposed to identification of a set of 'logical truths' from which eternal necessities (such as mathematics) can be derived. 'Know' implies that they are true - which conclusions may not be.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Bernays (1918) formulated and proved the completeness of propositional logic [Shapiro]
     Full Idea: Bernays (1918) formulated and proved the completeness of propositional logic, the first precise solution as part of the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.1)
Can one develop set theory first, then derive numbers, or are numbers more basic? [Shapiro]
     Full Idea: In 1910 Weyl observed that set theory seemed to presuppose natural numbers, and he regarded numbers as more fundamental than sets, as did Fraenkel. Dedekind had developed set theory independently, and used it to formulate numbers.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2.2)
Skolem and Gödel championed first-order, and Zermelo, Hilbert, and Bernays championed higher-order [Shapiro]
     Full Idea: Skolem and Gödel were the main proponents of first-order languages. The higher-order language 'opposition' was championed by Zermelo, Hilbert, and Bernays.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.2)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic was an afterthought in the development of modern logic [Shapiro]
     Full Idea: Almost all the systems developed in the first part of the twentieth century are higher-order; first-order logic was an afterthought.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.1)
The 'triumph' of first-order logic may be related to logicism and the Hilbert programme, which failed [Shapiro]
     Full Idea: The 'triumph' of first-order logic may be related to the remnants of failed foundationalist programmes early this century - logicism and the Hilbert programme.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: Being complete must also be one of its attractions, and Quine seems to like it because of its minimal ontological commitment.
Maybe compactness, semantic effectiveness, and the Löwenheim-Skolem properties are desirable [Shapiro]
     Full Idea: Tharp (1975) suggested that compactness, semantic effectiveness, and the Löwenheim-Skolem properties are consequences of features one would want a logic to have.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: I like this proposal, though Shapiro is strongly against. We keep extending our logic so that we can prove new things, but why should we assume that we can prove everything? That's just what Gödel suggests that we should give up on.
The notion of finitude is actually built into first-order languages [Shapiro]
     Full Idea: The notion of finitude is explicitly 'built in' to the systems of first-order languages in one way or another.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1)
     A reaction: Personally I am inclined to think that they are none the worse for that. No one had even thought of all these lovely infinities before 1870, and now we are supposed to change our logic (our actual logic!) to accommodate them. Cf quantum logic.
First-order logic is Complete, and Compact, with the Löwenheim-Skolem Theorems [Shapiro]
     Full Idea: Early study of first-order logic revealed a number of important features. Gödel showed that there is a complete, sound and effective deductive system. It follows that it is Compact, and there are also the downward and upward Löwenheim-Skolem Theorems.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic is better than set theory, since it only adds relations and operations, and nothing else [Shapiro, by Lavine]
     Full Idea: Shapiro preferred second-order logic to set theory because second-order logic refers only to the relations and operations in a domain, and not to the other things that set-theory brings with it - other domains, higher-order relations, and so forth.
     From: report of Stewart Shapiro (Foundations without Foundationalism [1991]) by Shaughan Lavine - Understanding the Infinite VII.4
Broad standard semantics, or Henkin semantics with a subclass, or many-sorted first-order semantics? [Shapiro]
     Full Idea: Three systems of semantics for second-order languages: 'standard semantics' (variables cover all relations and functions), 'Henkin semantics' (relations and functions are a subclass) and 'first-order semantics' (many-sorted domains for variable-types).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: [my summary]
Henkin semantics has separate variables ranging over the relations and over the functions [Shapiro]
     Full Idea: In 'Henkin' semantics, in a given model the relation variables range over a fixed collection of relations D on the domain, and the function variables range over a collection of functions F on the domain.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
Some say that second-order logic is mathematics, not logic [Shapiro]
     Full Idea: Some authors argue that second-order logic (with standard semantics) is not logic at all, but is a rather obscure form of mathematics.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
In standard semantics for second-order logic, a single domain fixes the ranges for the variables [Shapiro]
     Full Idea: In the standard semantics of second-order logic, by fixing a domain one thereby fixes the range of both the first-order variables and the second-order variables. There is no further 'interpreting' to be done.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 3.3)
     A reaction: This contrasts with 'Henkin' semantics (Idea 13650), or first-order semantics, which involve more than one domain of quantification.
Completeness, Compactness and Löwenheim-Skolem fail in second-order standard semantics [Shapiro]
     Full Idea: The counterparts of Completeness, Compactness and the Löwenheim-Skolem theorems all fail for second-order languages with standard semantics, but hold for Henkin or first-order semantics. Hence such logics are much like first-order logic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: Shapiro votes for the standard semantics, because he wants the greater expressive power, especially for the characterization of infinite structures.
If the aim of logic is to codify inferences, second-order logic is useless [Shapiro]
     Full Idea: If the goal of logical study is to present a canon of inference, a calculus which codifies correct inference patterns, then second-order logic is a non-starter.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be because it is not 'complete'. However, moves like plural quantification seem aimed at capturing ordinary language inferences, so the difficulty is only that there isn't a precise 'calculus'.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Logical consequence can be defined in terms of the logical terminology [Shapiro]
     Full Idea: Informally, logical consequence is sometimes defined in terms of the meanings of a certain collection of terms, the so-called 'logical terminology'.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: This seems to be a compositional account, where we build a full account from an account of the atomic bits, perhaps presented as truth-tables.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
The two standard explanations of consequence are semantic (in models) and deductive [Shapiro]
     Full Idea: The two best historical explanations of consequence are the semantic (model-theoretic), and the deductive versions.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.2)
     A reaction: Shapiro points out the fictionalists are in trouble here, because the first involves commitment to sets, and the second to the existence of deductions.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Semantic consequence is ineffective in second-order logic [Shapiro]
     Full Idea: It follows from Gödel's incompleteness theorem that the semantic consequence relation of second-order logic is not effective. For example, the set of logical truths of any second-order logic is not recursively enumerable. It is not even arithmetic.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: I don't fully understand this, but it sounds rather major, and a good reason to avoid second-order logic (despite Shapiro's proselytising). See Peter Smith on 'effectively enumerable'.
If a logic is incomplete, its semantic consequence relation is not effective [Shapiro]
     Full Idea: Second-order logic is inherently incomplete, so its semantic consequence relation is not effective.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
Intuitionism only sanctions modus ponens if all three components are proved [Shapiro]
     Full Idea: In some intuitionist semantics modus ponens is not sanctioned. At any given time there is likely to be a conditional such that it and its antecedent have been proved, but nobody has bothered to prove the consequent.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.7)
     A reaction: [He cites Heyting] This is a bit baffling. In what sense can 'it' (i.e. the conditional implication) have been 'proved' if the consequent doesn't immediately follow? Proving both propositions seems to make the conditional redundant.
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
Either logic determines objects, or objects determine logic, or they are separate [Shapiro]
     Full Idea: Ontology does not depend on language and logic if either one has the objects determining the logic, or the objects are independent of the logic.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.4)
     A reaction: I favour the first option. I think we should seek an account of how logic grows from our understanding of the physical world. If this cannot be established, I shall invent a new Mad Logic, and use it for all my future reasoning, with (I trust) impunity.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The law of excluded middle might be seen as a principle of omniscience [Shapiro]
     Full Idea: The law of excluded middle might be seen as a principle of omniscience.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 6.3)
     A reaction: [E.Bishop 1967 is cited] Put that way, you can see why a lot of people (such as intuitionists in mathematics) might begin to doubt it.
Intuitionists deny excluded middle, because it is committed to transcendent truth or objects [Shapiro]
     Full Idea: Intuitionists in mathematics deny excluded middle, because it is symptomatic of faith in the transcendent existence of mathematical objects and/or the truth of mathematical statements.
     From: Stewart Shapiro (Thinking About Mathematics [2000], 1.2)
     A reaction: There are other problems with excluded middle, such as vagueness, but on the whole I, as a card-carrying 'realist', am committed to the law of excluded middle.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Finding the logical form of a sentence is difficult, and there are no criteria of correctness [Shapiro]
     Full Idea: It is sometimes difficult to find a formula that is a suitable counterpart of a particular sentence of natural language, and there is no acclaimed criterion for what counts as a good, or even acceptable, 'translation'.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Classical connectives differ from their ordinary language counterparts; '∧' is timeless, unlike 'and' [Shapiro]
     Full Idea: To some extent, every truth-functional connective differs from its counterpart in ordinary language. Classical conjunction, for example, is timeless, whereas the word 'and' often is not. 'Socrates runs and Socrates stops' cannot be reversed.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 3)
     A reaction: Shapiro suggests two interpretations: either the classical connectives are revealing the deeper structure of ordinary language, or else they are a simplification of it.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A function is just an arbitrary correspondence between collections [Shapiro]
     Full Idea: The modern extensional notion of function is just an arbitrary correspondence between collections.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 1)
     A reaction: Shapiro links this with the idea that a set is just an arbitrary collection. These minimalist concepts seem like a reaction to a general failure to come up with a more useful and common sense definition.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
We might reduce ontology by using truth of sentences and terms, instead of using objects satisfying models [Shapiro]
     Full Idea: The main role of substitutional semantics is to reduce ontology. As an alternative to model-theoretic semantics for formal languages, the idea is to replace the 'satisfaction' relation of formulas (by objects) with the 'truth' of sentences (using terms).
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: I find this very appealing, and Ruth Barcan Marcus is the person to look at. My intuition is that logic should have no ontology at all, as it is just about how inference works, not about how things are. Shapiro offers a compromise.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order variables also range over properties, sets, relations or functions [Shapiro]
     Full Idea: Second-order variables can range over properties, sets, or relations on the items in the domain-of-discourse, or over functions from the domain itself.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Maybe plural quantifiers should be understood in terms of classes or sets [Shapiro]
     Full Idea: Maybe plural quantifiers should themselves be understood in terms of classes (or sets).
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 7.4)
     A reaction: [Shapiro credits Resnik for this criticism]
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is 'satisfiable' if it has a model [Shapiro]
     Full Idea: Normally, to say that a sentence Φ is 'satisfiable' is to say that there exists a model of Φ.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: Nothing is said about whether the model is impressive, or founded on good axioms. Tarski builds his account of truth from this initial notion of satisfaction.
'Satisfaction' is a function from models, assignments, and formulas to {true,false} [Shapiro]
     Full Idea: The 'satisfaction' relation may be thought of as a function from models, assignments, and formulas to the truth values {true,false}.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: This at least makes clear that satisfaction is not the same as truth. Now you have to understand how Tarski can define truth in terms of satisfaction.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Model theory deals with relations, reference and extensions [Shapiro]
     Full Idea: Model theory determines only the relations between truth conditions, the reference of singular terms, the extensions of predicates, and the extensions of the logical terminology.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
Semantics for models uses set-theory [Shapiro]
     Full Idea: Typically, model-theoretic semantics is formulated in set theory.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 2.5.1)
The central notion of model theory is the relation of 'satisfaction' [Shapiro]
     Full Idea: The central notion of model theory is the relation of 'satisfaction', sometimes called 'truth in a model'.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.9)
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Categoricity can't be reached in a first-order language [Shapiro]
     Full Idea: Categoricity cannot be attained in a first-order language.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 7.3)
An axiomatization is 'categorical' if its models are isomorphic, so there is really only one interpretation [Shapiro]
     Full Idea: An axiomatization is 'categorical' if all its models are isomorphic to one another; ..hence it has 'essentially only one' interpretation [Veblen 1904].
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.2.1)
Theory ontology is never complete, but is only determined 'up to isomorphism' [Shapiro]
     Full Idea: No object-language theory determines its ontology by itself. The best possible is that all models are isomorphic, in which case the ontology is determined 'up to isomorphism', but only if the domain is finite, or it is stronger than first-order.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 2.5)
     A reaction: This seems highly significant when ontological claims are being made, and is good support for Shapiro's claim that the structures matter, not the objects. There is a parallel in Tarksi's notion of truth-in-all-models. [The Skolem Paradox is the problem]
The set-theoretical hierarchy contains as many isomorphism types as possible [Shapiro]
     Full Idea: Set theorists often point out that the set-theoretical hierarchy contains as many isomorphism types as possible; that is the point of the theory.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: Hence there are a huge number of models for any theory, which are then reduced to the one we want at the level of isomorphism.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
The Löwenheim-Skolem theorems show an explosion of infinite models, so 1st-order is useless for infinity [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems mean that no first-order theory with an infinite model is categorical. If Γ has an infinite model, then it has a model of every infinite cardinality. So first-order languages cannot characterize infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: So much of the debate about different logics hinges on characterizing 'infinite structures' - whatever they are! Shapiro is a leading structuralist in mathematics, so he wants second-order logic to help with his project.
Substitutional semantics only has countably many terms, so Upward Löwenheim-Skolem trivially fails [Shapiro]
     Full Idea: The Upward Löwenheim-Skolem theorem fails (trivially) with substitutional semantics. If there are only countably many terms of the language, then there are no uncountable substitution models.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 9.1.4)
     A reaction: Better and better. See Idea 13674. Why postulate more objects than you can possibly name? I'm even suspicious of all real numbers, because you can't properly define them in finite terms. Shapiro objects that the uncountable can't be characterized.
Downward Löwenheim-Skolem: if there's an infinite model, there is a countable model [Shapiro]
     Full Idea: Downward Löwenheim-Skolem: a finite or denumerable set of first-order formulas that is satisfied by a model whose domain is infinite is satisfied in a model whose domain is the natural numbers
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
Any theory with an infinite model has a model of every infinite cardinality [Shapiro]
     Full Idea: The Löwenheim-Skolem theorems (which apply to first-order formal theories) show that any theory with an infinite model has a model of every infinite cardinality.
     From: Stewart Shapiro (Philosophy of Mathematics [1997], 4.8)
     A reaction: This aspect of the theorems is the Skolem Paradox. Shapiro argues that in first-order this infinity of models for arithmetic must be accepted, but he defends second-order model theory, where 'standard' models can be selected.
Up Löwenheim-Skolem: if natural numbers satisfy wffs, then an infinite domain satisfies them [Shapiro]
     Full Idea: Upward Löwenheim-Skolem: if a set of first-order formulas is satisfied by a domain of at least the natural numbers, then it is satisfied by a model of at least some infinite cardinal.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.1)
The Löwenheim-Skolem Theorems fail for second-order languages with standard semantics [Shapiro]
     Full Idea: Both of the Löwenheim-Skolem Theorems fail for second-order languages with a standard semantics
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.3.2)
Downward Löwenheim-Skolem: each satisfiable countable set always has countable models [Shapiro]
     Full Idea: A language has the Downward Löwenheim-Skolem property if each satisfiable countable set of sentences has a model whose domain is at most countable.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't employ an infinite model to represent a fact about a countable set.
Upward Löwenheim-Skolem: each infinite model has infinite models of all sizes [Shapiro]
     Full Idea: A language has the Upward Löwenheim-Skolem property if for each set of sentences whose model has an infinite domain, then it has a model at least as big as each infinite cardinal.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)
     A reaction: This means you can't have a countable model to represent a fact about infinite sets.
The Löwenheim-Skolem theorem seems to be a defect of first-order logic [Shapiro]
     Full Idea: The Löwenheim-Skolem theorem is usually taken as a sort of defect (often thought to be inevitable) of the first-order logic.
     From: Stewart Shapiro (Higher-Order Logic [2001], 2.4)
     A reaction: [He is quoting Wang 1974 p.154]
5. Theory of Logic / K. Features of Logics / 3. Soundness
'Weakly sound' if every theorem is a logical truth; 'sound' if every deduction is a semantic consequence [Shapiro]
     Full Idea: A logic is 'weakly sound' if every theorem is a logical truth, and 'strongly sound', or simply 'sound', if every deduction from Γ is a semantic consequence of Γ. Soundness indicates that the deductive system is faithful to the semantics.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 1.1)
     A reaction: Similarly, 'weakly complete' is when every logical truth is a theorem.
5. Theory of Logic / K. Features of Logics / 4. Completeness
We can live well without completeness in logic [Shapiro]
     Full Idea: We can live without completeness in logic, and live well.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: This is the kind of heady suggestion that American philosophers love to make. Sounds OK to me, though. Our ability to draw good inferences should be expected to outrun our ability to actually prove them. Completeness is for wimps.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Non-compactness is a strength of second-order logic, enabling characterisation of infinite structures [Shapiro]
     Full Idea: It is sometimes said that non-compactness is a defect of second-order logic, but it is a consequence of a crucial strength - its ability to give categorical characterisations of infinite structures.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], Pref)
     A reaction: The dispute between fans of first- and second-order may hinge on their attitude to the infinite. I note that Skolem, who was not keen on the infinite, stuck to first-order. Should we launch a new Skolemite Crusade?
Compactness is derived from soundness and completeness [Shapiro]
     Full Idea: Compactness is a corollary of soundness and completeness. If Γ is not satisfiable, then, by completeness, Γ is not consistent. But the deductions contain only finite premises. So a finite subset shows the inconsistency.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 4.1)
     A reaction: [this is abbreviated, but a proof of compactness] Since all worthwhile logics are sound, this effectively means that completeness entails compactness.
5. Theory of Logic / K. Features of Logics / 9. Expressibility
A language is 'semantically effective' if its logical truths are recursively enumerable [Shapiro]
     Full Idea: A logical language is 'semantically effective' if the collection of logically true sentences is a recursively enumerable set of strings.
     From: Stewart Shapiro (Foundations without Foundationalism [1991], 6.5)