Combining Philosophers

Ideas for Lynch,MP/Glasgow,JM, Peter Smith and Ian Rumfitt

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


49 ideas

5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
If a sound conclusion comes from two errors that cancel out, the path of the argument must matter [Rumfitt]
     Full Idea: If a designated conclusion follows from the premisses, but the argument involves two howlers which cancel each other out, then the moral is that the path an argument takes from premisses to conclusion does matter to its logical evaluation.
     From: Ian Rumfitt ("Yes" and "No" [2000], II)
     A reaction: The drift of this is that our view of logic should be a little closer to the reasoning of ordinary language, and we should rely a little less on purely formal accounts.
Logic is higher-order laws which can expand the range of any sort of deduction [Rumfitt]
     Full Idea: On the conception of logic recommended here, logical laws are higher-order laws that can be applied to expand the range of any deductive principles.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: You need the concept of a 'deductive principle' to get this going, but I take it that might be directly known, rather than derived from a law.
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Logic guides thinking, but it isn't a substitute for it [Rumfitt]
     Full Idea: Logic is part of a normative theory of thinking, not a substitute for thinking.
     From: Ian Rumfitt (The Logic of Boundaryless Concepts [2007], p.13)
     A reaction: There is some sort of logicians' dream, going back to Leibniz, of a reasoning engine, which accepts propositions and outputs inferences. I agree with this idea. People who excel at logic are often, it seems to me, modest at philosophy.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The case for classical logic rests on its rules, much more than on the Principle of Bivalence [Rumfitt]
     Full Idea: I think it is a strategic mistake to rest the case for classical logic on the Principle of Bivalence: the soundness of the classical logic rules is far more compelling than the truth of Bivalence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: The 'rules' to which he is referring are those of 'natural deduction', which make very few assumptions, and are intended to be intuitively appealing.
Classical logic rules cannot be proved, but various lines of attack can be repelled [Rumfitt]
     Full Idea: There is not the slightest prospect of proving that the rules of classical logic are sound. ….All that the defender of classical logic can do is scrutinize particular attacks and try to repel them.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: This is the agenda for Rumfitt's book.
If truth-tables specify the connectives, classical logic must rely on Bivalence [Rumfitt]
     Full Idea: If we specify the senses of the connectives by way of the standard truth-tables, then we must justify classical logic only by appeal to the Principle of Bivalence.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 7)
     A reaction: Rumfitt proposes to avoid the truth-tables, and hence not to rely on Bivalence for his support of classical logic. He accepts that Bivalence is doubtful, citing the undecidability of the Continuum Hypothesis as a problem instance.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order arithmetic can prove new sentences of first-order [Smith,P]
     Full Idea: Going second-order in arithmetic enables us to prove new first-order arithmetical sentences that we couldn't prove before.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 23.4)
     A reaction: The wages of Satan, perhaps. We can prove things about objects by proving things about their properties and sets and functions. Smith says this fact goes all the way up the hierarchy.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Soundness in argument varies with context, and may be achieved very informally indeed [Rumfitt]
     Full Idea: Our ordinary standards for deeming arguments to be sound vary greatly from context to context. Even the package tourist's syllogism ('It's Tuesday, so this is Belgium') may meet the operative standards for soundness.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
     A reaction: No doubt one could spell out the preconceptions of package tourist reasoning, and arrive at the logical form of the implication which is being offered.
There is a modal element in consequence, in assessing reasoning from suppositions [Rumfitt]
     Full Idea: There is a modal element in consequence, in its applicability to assessing reasoning from suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
We reject deductions by bad consequence, so logical consequence can't be deduction [Rumfitt]
     Full Idea: A rule is to be rejected if it enables us to deduce from some premisses a purported conclusion that does not follow from them in the broad sense. The idea that deductions answer to consequence is incomprehensible if consequence consists in deducibility.
     From: Ian Rumfitt (Logical Necessity [2010], §2)
Logical consequence is a relation that can extended into further statements [Rumfitt]
     Full Idea: Logical consequence, I argue, is distinguished from other implication relations by the fact that logical laws may be applied in extending any implication relation so that it applies among some complex statements involving logical connectives.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 3.3)
     A reaction: He offers implication in electronics as an example of a non-logical implication relation. This seems to indicate that logic must be monotonic, that consequence is transitive, and that the Cut Law always applies.
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
Normal deduction presupposes the Cut Law [Rumfitt]
     Full Idea: Our deductive practices seem to presuppose the Cut Law.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.3)
     A reaction: That is, if you don't believe that deductions can be transitive (and thus form a successful chain of implications), then you don't really believe in deduction. It remains a well known fact that you can live without the Cut Law.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
When faced with vague statements, Bivalence is not a compelling principle [Rumfitt]
     Full Idea: I do not regard Bivalence, when applied to vague statements, as an intuitively compelling principle which we ought to try to preserve.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 8.7)
     A reaction: The point of Rumfitt's book is to defend classical logic despite failures of bivalence. He also cites undecidable concepts such as the Continuum Hypothesis.
5. Theory of Logic / D. Assumptions for Logic / 3. Contradiction
Contradictions include 'This is red and not coloured', as well as the formal 'B and not-B' [Rumfitt]
     Full Idea: Overt contradictions include formal contradictions of form 'B and not B', but I also take them to include 'This is red all over and green all over' and 'This is red and not coloured'.
     From: Ian Rumfitt (Logical Necessity [2010], Intro)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Standardly 'and' and 'but' are held to have the same sense by having the same truth table [Rumfitt]
     Full Idea: If 'and' and 'but' really are alike in sense, in what might that likeness consist? Some philosophers of classical logic will reply that they share a sense by virtue of sharing a truth table.
     From: Ian Rumfitt ("Yes" and "No" [2000])
     A reaction: This is the standard view which Rumfitt sets out to challenge.
In specifying a logical constant, use of that constant is quite unavoidable [Rumfitt]
     Full Idea: There is no prospect whatever of giving the sense of a logical constant without using that very constant, and much else besides, in the metalinguistic principle that specifies that sense.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
The sense of a connective comes from primitively obvious rules of inference [Rumfitt]
     Full Idea: A connective will possess the sense that it has by virtue of its competent users' finding certain rules of inference involving it to be primitively obvious.
     From: Ian Rumfitt ("Yes" and "No" [2000], III)
     A reaction: Rumfitt cites Peacocke as endorsing this view, which characterises the logical connectives by their rules of usage rather than by their pure semantic value.
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'partial function' maps only some elements to another set [Smith,P]
     Full Idea: A 'partial function' is one which maps only some elements of a domain to elements in another set. For example, the reciprocal function 1/x is not defined for x=0.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1 n1)
A 'total function' maps every element to one element in another set [Smith,P]
     Full Idea: A 'total function' is one which maps every element of a domain to exactly one corresponding value in another set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
An argument is a 'fixed point' for a function if it is mapped back to itself [Smith,P]
     Full Idea: If a function f maps the argument a back to a itself, so that f(a) = a, then a is said to be a 'fixed point' for f.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 20.5)
The 'range' of a function is the set of elements in the output set created by the function [Smith,P]
     Full Idea: The 'range' of a function is the set of elements in the output set that are values of the function for elements in the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: In other words, the range is the set of values that were created by the function.
Two functions are the same if they have the same extension [Smith,P]
     Full Idea: We count two functions as being the same if they have the same extension, i.e. if they pair up arguments with values in the same way.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 11.3)
     A reaction: So there's only one way to skin a cat in mathematical logic.
5. Theory of Logic / E. Structures of Logic / 7. Predicates in Logic
The Comprehension Schema says there is a property only had by things satisfying a condition [Smith,P]
     Full Idea: The so-called Comprehension Schema ∃X∀x(Xx ↔ φ(x)) says that there is a property which is had by just those things which satisfy the condition φ.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 22.3)
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A 'theorem' of a theory is a sentence derived from the axioms using the proof system [Smith,P]
     Full Idea: 'Theorem': given a derivation of the sentence φ from the axioms of the theory T using the background logical proof system, we will say that φ is a 'theorem' of the theory. Standard abbreviation is T |- φ.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Geometrical axioms in logic are nowadays replaced by inference rules (which imply the logical truths) [Rumfitt]
     Full Idea: The geometrical style of formalization of logic is now little more than a quaint anachronism, largely because it fails to show logical truths for what they are: simply by-products of rules of inference that are applicable to suppositions.
     From: Ian Rumfitt (Logical Necessity [2010], §1)
     A reaction: This is the rejection of Russell-style axiom systems in favour of Gentzen-style natural deduction systems (starting from rules). Rumfitt quotes Dummett in support.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
A 'natural deduction system' has no axioms but many rules [Smith,P]
     Full Idea: A 'natural deduction system' will have no logical axioms but may rules of inference.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 09.1)
     A reaction: He contrasts this with 'Hilbert-style systems', which have many axioms but few rules. Natural deduction uses many assumptions which are then discharged, and so tree-systems are good for representing it.
Introduction rules give deduction conditions, and Elimination says what can be deduced [Rumfitt]
     Full Idea: 'Introduction rules' state the conditions under which one may deduce a conclusion whose dominant logical operator is the connective. 'Elimination rules' state what may be deduced from some premises, where the major premise is dominated by the connective.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 1.1)
     A reaction: So Introduction gives conditions for deduction, and Elimination says what can actually be deduced. If my magic wand can turn you into a frog (introduction), and so I turn you into a frog, how does that 'eliminate' the wand?
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
No nice theory can define truth for its own language [Smith,P]
     Full Idea: No nice theory can define truth for its own language.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 21.5)
     A reaction: This leads on to Tarski's account of truth.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths are just the assumption-free by-products of logical rules [Rumfitt]
     Full Idea: Gentzen's way of formalising logic has accustomed people to the idea that logical truths are simply the by-products of logical rules, that arise when all the assumptions on which a conclusion rests have been discharged.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.5)
     A reaction: This is the key belief of those who favour the natural deduction account of logic. If you really believe in separate logic truths, then you can use them as axioms.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
An 'injective' ('one-to-one') function creates a distinct output element from each original [Smith,P]
     Full Idea: An 'injective' function is 'one-to-one' - each element of the output set results from a different element of the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: That is, two different original elements cannot lead to the same output element.
A 'surjective' ('onto') function creates every element of the output set [Smith,P]
     Full Idea: A 'surjective' function is 'onto' - the whole of the output set results from the function being applied to elements of the original set.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
A 'bijective' function has one-to-one correspondence in both directions [Smith,P]
     Full Idea: A 'bijective' function has 'one-to-one correspondence' - it is both surjective and injective, so that every element in each of the original and the output sets has a matching element in the other.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.1)
     A reaction: Note that 'injective' is also one-to-one, but only in the one direction.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If everything that a theory proves is true, then it is 'sound' [Smith,P]
     Full Idea: If everything that a theory proves must be true, then it is a 'sound' theory.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
Soundness is true axioms and a truth-preserving proof system [Smith,P]
     Full Idea: Soundness is normally a matter of having true axioms and a truth-preserving proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
     A reaction: The only exception I can think of is if a theory consisted of nothing but the axioms.
A theory is 'sound' iff every theorem is true (usually from true axioms and truth-preservation) [Smith,P]
     Full Idea: A theory is 'sound' iff every theorem of it is true (i.e. true on the interpretation built into its language). Soundness is normally a matter of having true axioms and a truth-preserving proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A theory is 'negation complete' if it proves all sentences or their negation [Smith,P]
     Full Idea: A theory is 'negation complete' if it decides every sentence of its language (either the sentence, or its negation).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
'Complete' applies both to whole logics, and to theories within them [Smith,P]
     Full Idea: There is an annoying double-use of 'complete': a logic may be semantically complete, but there may be an incomplete theory expressed in it.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
A theory is 'negation complete' if one of its sentences or its negation can always be proved [Smith,P]
     Full Idea: Logicians say that a theory T is '(negation) complete' if, for every sentence φ in the language of the theory, either φ or ¬φ is deducible in T's proof system. If this were the case, then truth could be equated with provability.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 01.1)
     A reaction: The word 'negation' seems to be a recent addition to the concept. Presumable it might be the case that φ can always be proved, but not ¬φ.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Two routes to Incompleteness: semantics of sound/expressible, or syntax of consistency/proof [Smith,P]
     Full Idea: There are two routes to Incompleteness results. One goes via the semantic assumption that we are dealing with sound theories, using a result about what they can express. The other uses the syntactic notion of consistency, with stronger notions of proof.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 18.1)
5. Theory of Logic / K. Features of Logics / 7. Decidability
'Effective' means simple, unintuitive, independent, controlled, dumb, and terminating [Smith,P]
     Full Idea: An 'effectively decidable' (or 'computable') algorithm will be step-by-small-step, with no need for intuition, or for independent sources, with no random methods, possible for a dumb computer, and terminates in finite steps.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.2)
     A reaction: [a compressed paragraph]
A theory is 'decidable' if all of its sentences could be mechanically proved [Smith,P]
     Full Idea: A theory is 'decidable' iff there is a mechanical procedure for determining whether any sentence of its language can be proved.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.4)
     A reaction: Note that it doesn't actually have to be proved. The theorems of the theory are all effectively decidable.
Any consistent, axiomatized, negation-complete formal theory is decidable [Smith,P]
     Full Idea: Any consistent, axiomatized, negation-complete formal theory is decidable.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 03.6)
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A set is 'enumerable' is all of its elements can result from a natural number function [Smith,P]
     Full Idea: A set is 'enumerable' iff either the set is empty, or there is a surjective function to the set from the set of natural numbers, so that the set is in the range of that function.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.3)
A set is 'effectively enumerable' if a computer could eventually list every member [Smith,P]
     Full Idea: A set is 'effectively enumerable' if an (idealised) computer could be programmed to generate a list of its members such that any member will eventually be mentioned (even if the list is empty, or without end, or contains repetitions).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
A finite set of finitely specifiable objects is always effectively enumerable (e.g. primes) [Smith,P]
     Full Idea: A finite set of finitely specifiable objects is always effectively enumerable (for example, the prime numbers).
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.4)
The set of ordered pairs of natural numbers <i,j> is effectively enumerable [Smith,P]
     Full Idea: The set of ordered pairs of natural numbers (i,j) is effectively enumerable, as proven by listing them in an array (across: <0,0>, <0,1>, <0,2> ..., and down: <0,0>, <1,0>, <2,0>...), and then zig-zagging.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 02.5)
The thorems of a nice arithmetic can be enumerated, but not the truths (so they're diffferent) [Smith,P]
     Full Idea: The theorems of any properly axiomatized theory can be effectively enumerated. However, the truths of any sufficiently expressive arithmetic can't be effectively enumerated. Hence the theorems and truths of arithmetic cannot be the same.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 05 Intro)
5. Theory of Logic / K. Features of Logics / 9. Expressibility
Being 'expressible' depends on language; being 'capture/represented' depends on axioms and proof system [Smith,P]
     Full Idea: Whether a property is 'expressible' in a given theory depends on the richness of the theory's language. Whether the property can be 'captured' (or 'represented') by the theory depends on the richness of the axioms and proof system.
     From: Peter Smith (Intro to Gödel's Theorems [2007], 04.7)
5. Theory of Logic / K. Features of Logics / 10. Monotonicity
Monotonicity means there is a guarantee, rather than mere inductive support [Rumfitt]
     Full Idea: Monotonicity seems to mark the difference between cases in which a guarantee obtains and those where the premises merely provide inductive support for a conclusion.
     From: Ian Rumfitt (The Boundary Stones of Thought [2015], 2.3)
     A reaction: Hence it is plausible to claim that 'non-monotonic logic' is a contradiction in terms.