Combining Philosophers

Ideas for Melvin Fitting, Bas C. van Fraassen and Rayo,A/Uzquiasno,G

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


5 ideas

5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Classical logic is deliberately extensional, in order to model mathematics [Fitting]
     Full Idea: Mathematics is typically extensional throughout (we write 3+2=2+3 despite the two terms having different meanings). ..Classical first-order logic is extensional by design since it primarily evolved to model the reasoning of mathematics.
     From: Melvin Fitting (Intensional Logic [2007], §1)
5. Theory of Logic / F. Referring in Logic / 3. Property (λ-) Abstraction
λ-abstraction disambiguates the scope of modal operators [Fitting]
     Full Idea: λ-abstraction can be used to abstract and disambiguate a predicate. De re is [λx◊P(x)](f) - f has the possible-P property - and de dicto is ◊[λxP(x)](f) - possibly f has the P-property. Also applies to □.
     From: Melvin Fitting (Intensional Logic [2007], §3.3)
     A reaction: Compare the Barcan formula. Originated with Church in the 1930s, and Carnap 1947, but revived by Stalnaker and Thomason 1968. Because it refers to the predicate, it has a role in intensional versions of logic, especially modal logic.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
We could have unrestricted quantification without having an all-inclusive domain [Rayo/Uzquiano]
     Full Idea: The possibility of unrestricted quantification does not immediately presuppose the existence of an all-inclusive domain. One could deny an all-inclusive domain but grant that some quantifications are sometimes unrestricted.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.1)
     A reaction: Thus you can quantify over anything you like, but only from what is available. Eat what you like (in this restaurant).
Absolute generality is impossible, if there are indefinitely extensible concepts like sets and ordinals [Rayo/Uzquiano]
     Full Idea: There are doubts about whether absolute generality is possible, if there are certain concepts which are indefinitely extensible, lacking definite extensions, and yielding an ever more inclusive hierarchy. Sets and ordinals are paradigm cases.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.1)
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Perhaps second-order quantifications cover concepts of objects, rather than plain objects [Rayo/Uzquiano]
     Full Idea: If one thought of second-order quantification as quantification over first-level Fregean concepts [note: one under which only objects fall], talk of domains might be regimented as talk of first-level concepts, which are not objects.
     From: Rayo,A/Uzquiasno,G (Introduction to 'Absolute Generality' [2006], 1.2.2)
     A reaction: That is (I take it), don't quantify over objects, but quantify over concepts, but only those under which known objects fall. One might thus achieve naïve comprehension without paradoxes. Sound like fun.