Combining Philosophers

Ideas for Archimedes, John Locke and James Robert Brown

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


24 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is the only place where we are sure we are right [Brown,JR]
     Full Idea: Mathematics seems to be the one and only place where we humans can be absolutely sure that we got it right.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Apart from death and taxes, that is. Personally I am more certain of the keyboard I am typing on than I am of Pythagoras's Theorem, but the experts seem pretty confident about the number stuff.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
'There are two apples' can be expressed logically, with no mention of numbers [Brown,JR]
     Full Idea: 'There are two apples' can be recast as 'x is an apple and y is an apple, and x isn't y, and if z is an apple it is the same as x or y', which makes no appeal at all to mathematics.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: He cites this as the basis of Hartry Field's claim that science can be done without numbers. The logic is ∃x∃y∀z(Ax&Ay&(x¬=y)&(Az→z=x∨z=y)).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / m. One
The idea of 'one' is the simplest, most obvious and most widespread idea [Locke]
     Full Idea: Among all the ideas we have, as there is none suggested to the mind by more ways, so there is none more simple than that of unity, or one; ..every idea in our understanding, every thought of our minds brings this idea along with it.
     From: John Locke (Essay Conc Human Understanding (2nd Ed) [1694], 2.16.01)
     A reaction: What does Locke mean by 'suggested' to the mind? I take it that this phenomenon of psychology (or of reality, if you like) is the foundation of mathematics, making one clearly prior to zero.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / n. Pi
π is a 'transcendental' number, because it is not the solution of an equation [Brown,JR]
     Full Idea: The number π is not only irrational, but it is also (unlike √2) a 'transcendental' number, because it is not the solution of an algebraic equation.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: So is that a superficial property, or a profound one? Answers on a post card.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Mathematics represents the world through structurally similar models. [Brown,JR]
     Full Idea: Mathematics hooks onto the world by providing representations in the form of structurally similar models.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This is Brown's conclusion. It needs notions of mapping, one-to-one correspondence, and similarity. I like the idea of a 'model', as used in both logic and mathematics, and children's hobbies. The mind is a model-making machine.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
If there were real infinities, you could add two together, which is ridiculous [Locke]
     Full Idea: If a man had a positive idea of infinite, either duration or space, he could add two infinities together; nay, make one Infinite infinity bigger than another, absurdities too gross to be confuted.
     From: John Locke (Essay Conc Human Understanding (2nd Ed) [1694], 2.17.20)
     A reaction: A beautifully heartfelt objection to everything Cantor stood for, two hundred years before Cantor got round to it.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
There is no limit to how many ways something can be proved in mathematics [Brown,JR]
     Full Idea: I'm tempted to say that mathematics is so rich that there are indefinitely many ways to prove anything - verbal/symbolic derivations and pictures are just two.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 9)
     A reaction: Brown has been defending pictures as a form of proof. I wonder how long his list would be, if we challenged him to give more details? Some people have very low standards of proof.
Computers played an essential role in proving the four-colour theorem of maps [Brown,JR]
     Full Idea: The celebrity of the famous proof in 1976 of the four-colour theorem of maps is that a computer played an essential role in the proof.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: The problem concerns the reliability of the computers, but then all the people who check a traditional proof might also be unreliable. Quis custodet custodies?
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set theory may represent all of mathematics, without actually being mathematics [Brown,JR]
     Full Idea: Maybe all of mathematics can be represented in set theory, but we should not think that mathematics is set theory. Functions can be represented as order pairs, but perhaps that is not what functions really are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: This seems to me to be the correct view of the situation. If 2 is represented as {φ,{φ}}, why is that asymmetrical? The first digit seems to be the senior and original partner, but how could the digits of 2 differ from one another?
When graphs are defined set-theoretically, that won't cover unlabelled graphs [Brown,JR]
     Full Idea: The basic definition of a graph can be given in set-theoretic terms,...but then what could an unlabelled graph be?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: An unlabelled graph will at least need a verbal description for it to have any significance at all. My daily mood-swings look like this....
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
To see a structure in something, we must already have the idea of the structure [Brown,JR]
     Full Idea: Epistemology is a big worry for structuralists. ..To conjecture that something has a particular structure, we must already have conceived of the idea of the structure itself; we cannot be discovering structures by conjecturing them.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This has to be a crucial area of discussion. Do we have our heads full of abstract structures before we look out of the window? Externalism about the mind is important here; mind and world are not utterly distinct things.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Sets seem basic to mathematics, but they don't suit structuralism [Brown,JR]
     Full Idea: Set theory is at the very heart of mathematics; it may even be all there is to mathematics. The notion of set, however, seems quite contrary to the spirit of structuralism.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: So much the worse for sets, I say. You can, for example, define ordinality in terms of sets, but that is no good if ordinality is basic to the nature of numbers, rather than a later addition.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
The irrationality of root-2 was achieved by intellect, not experience [Brown,JR]
     Full Idea: We could not discover irrational numbers by physical measurement. The discovery of the irrationality of the square root of two was an intellectual achievement, not at all connected to sense experience.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Brown declares himself a platonist, and this is clearly a key argument for him, and rather a good one. Hm. I'll get back to you on this one...
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematics is just about ideas, so whether circles exist is irrelevant [Locke]
     Full Idea: All the discourses of mathematicians concerning conic sections etc. concern not the existence of any of those figures, but their demonstrations, which depend on their ideas, are the same, whether there be any square or circle existing in the world or no.
     From: John Locke (Essay Conc Human Understanding (2nd Ed) [1694], 4.04.08)
     A reaction: If the full-blown platonic circle really existed, we would have the epistemic problem not only of getting in causal contact with it, but also of knowing whether our idea of it was the correct idea. We can't know that, so we just work with our idea.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Every simple idea we ever have brings the idea of unity along with it [Locke]
     Full Idea: Amongst all the ideas we have… there is none more simple, than that of unity, or one… every idea in our understanding, every thought in our minds, brings this idea along with it.
     From: John Locke (Essay Conc Human Understanding (2nd Ed) [1694], 2.16.01)
     A reaction: If every idea we think of necessarily brings another idea along with it, that makes you suspect that the accompanying idea is innate. If I derive the concept of the sun from experience, do I also derive the idea that my concept is a unity?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
There is an infinity of mathematical objects, so they can't be physical [Brown,JR]
     Full Idea: A simple argument makes it clear that all mathematical arguments are abstract: there are infinitely many numbers, but only a finite number of physical entities, so most mathematical objects are non-physical. The best assumption is that they all are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This, it seems to me, is where constructivists score well (cf. Idea 9608). I don't have an infinity of bricks to build an infinity of houses, but I can imagine that the bricks just keep coming if I need them. Imagination is what is unbounded.
Numbers are not abstracted from particulars, because each number is a particular [Brown,JR]
     Full Idea: Numbers are not 'abstract' (in the old sense, of universals abstracted from particulars), since each of the integers is a unique individual, a particular, not a universal.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: An interesting observation which I have not seen directly stated before. Compare Idea 645. I suspect that numbers should be thought of as higher-order abstractions, which don't behave like normal universals (i.e. they're not distributed).
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Empiricists base numbers on objects, Platonists base them on properties [Brown,JR]
     Full Idea: Perhaps, instead of objects, numbers are associated with properties of objects. Basing them on objects is strongly empiricist and uses first-order logic, whereas the latter view is somewhat Platonistic, and uses second-order logic.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: I don't seem to have a view on this. You can count tomatoes, or you can count red objects, or even 'instances of red'. Numbers refer to whatever can be individuated. No individuation, no arithmetic. (It's also Hume v Armstrong on laws on nature).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Does some mathematics depend entirely on notation? [Brown,JR]
     Full Idea: Are there mathematical properties which can only be discovered using a particular notation?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: If so, this would seem to be a serious difficulty for platonists. Brown has just been exploring the mathematical theory of knots.
For nomalists there are no numbers, only numerals [Brown,JR]
     Full Idea: For the instinctive nominalist in mathematics, there are no numbers, only numerals.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Maybe. A numeral is a specific sign, sometimes in a specific natural language, so this seems to miss the fact that cardinality etc are features of reality, not just conventions.
The most brilliant formalist was Hilbert [Brown,JR]
     Full Idea: In mathematics, the most brilliant formalist of all was Hilbert
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: He seems to have developed his fully formalist views later in his career. See Mathematics|Basis of Mathematic|Formalism in our thematic section. Kreisel denies that Hilbert was a true formalist.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
There are no constructions for many highly desirable results in mathematics [Brown,JR]
     Full Idea: Constuctivists link truth with constructive proof, but necessarily lack constructions for many highly desirable results of classical mathematics, making their account of mathematical truth rather implausible.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The tricky word here is 'desirable', which is an odd criterion for mathematical truth. Nevertheless this sounds like a good objection. How flexible might the concept of a 'construction' be?
Constructivists say p has no value, if the value depends on Goldbach's Conjecture [Brown,JR]
     Full Idea: If we define p as '3 if Goldbach's Conjecture is true' and '5 if Goldbach's Conjecture is false', it seems that p must be a prime number, but, amazingly, constructivists would not accept this without a proof of Goldbach's Conjecture.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 8)
     A reaction: A very similar argument structure to Schrödinger's Cat. This seems (as Brown implies) to be a devastating knock-down argument, but I'll keep an open mind for now.