Combining Philosophers

Ideas for B Hale / C Wright, Edmund Husserl and Dennis Whitcomb

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


14 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
0 is not a number, as it answers 'how many?' negatively [Husserl, by Dummett]
     Full Idea: Husserl contends that 0 is not a number, on the grounds that 'nought' is a negative answer to the question 'how many?'.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894], p.144) by Michael Dummett - Frege philosophy of mathematics Ch.8
     A reaction: I seem to be in a tiny minority in thinking that Husserl may have a good point. One apple is different from one orange, but no apples are the same as no oranges. That makes 0 a very peculiar number. See Idea 9838.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Multiplicity in general is just one and one and one, etc. [Husserl]
     Full Idea: Multiplicity in general is no more than something and something and something, etc.; ..or more briefly, one and one and one, etc.
     From: Edmund Husserl (Philosophy of Arithmetic [1894], p.85), quoted by Gottlob Frege - Review of Husserl's 'Phil of Arithmetic'
     A reaction: Frege goes on to attack this idea fairly convincingly. It seems obvious that it is hard to say that you have seventeen items, if the only numberical concept in your possession is 'one'. How would you distinguish 17 from 16? What makes the ones 'multiple'?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Husserl said counting is more basic than Frege's one-one correspondence [Husserl, by Heck]
     Full Idea: Husserl famously argued that one should not explain number in terms of equinumerosity (or one-one correspondence), but should explain equinumerosity in terms of sameness of number, which should be characterised in terms of counting.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: [Heck admits he hasn't read the Husserl] I'm very sympathetic to Husserl, though nearly all modern thinking favours Frege. Counting connects numbers to their roots in the world. Mathematicians seem oblivious of such things.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Pure mathematics is the relations between all possible objects, and is thus formal ontology [Husserl, by Velarde-Mayol]
     Full Idea: Pure mathematics is the science of the relations between any object whatever (relation of whole to part, relation of equality, property, unity etc.). In this sense, pure mathematics is seen by Husserl as formal ontology.
     From: report of Edmund Husserl (Formal and Transcendental Logic [1929]) by Victor Velarde-Mayol - On Husserl 4.5.2
     A reaction: I would expect most modern analytic philosophers to agree with this. Modern mathematics (e.g. category theory) seems to have moved beyond this stage, but I still like this idea.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The incompletability of formal arithmetic reveals that logic also cannot be completely characterized [Hale/Wright]
     Full Idea: The incompletability of formal arithmetic reveals, not arithmetical truths which are not truths of logic, but that logical truth likewise defies complete deductive characterization. ...Gödel's result has no specific bearing on the logicist project.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §2 n5)
     A reaction: This is the key defence against the claim that Gödel's First Theorem demolished logicism.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Neo-logicism founds arithmetic on Hume's Principle along with second-order logic [Hale/Wright]
     Full Idea: The result of joining Hume's Principle to second-order logic is a consistent system which is a foundation for arithmetic, in the sense that all the fundamental laws of arithmetic are derivable within it as theorems. This seems a vindication of logicism.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: The controversial part seems to be second-order logic, which Quine (for example) vigorously challenged. The contention against most attempts to improve Frege's logicism is that they thereby cease to be properly logical.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
     Full Idea: The Julius Caesar problem is the problem of supplying a criterion of application for 'number', and thereby setting it up as the concept of a genuine sort of object. (Why is Julius Caesar not a number?)
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 3)
     A reaction: One response would be to deny that numbers are objects. Another would be to derive numbers from their application in counting objects, rather than the other way round. I suspect that the problem only real bothers platonists. Serves them right.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If structures are relative, this undermines truth-value and objectivity [Hale/Wright]
     Full Idea: The relativization of ontology to theory in structuralism can't avoid carrying with it a relativization of truth-value, which would compromise the objectivity which structuralists wish to claim for mathematics.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: This is the attraction of structures which grow out of the physical world, where truth-value is presumably not in dispute.
The structural view of numbers doesn't fit their usage outside arithmetical contexts [Hale/Wright]
     Full Idea: It is not clear how the view that natural numbers are purely intra-structural 'objects' can be squared with the widespread use of numerals outside purely arithmetical contexts.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: I don't understand this objection. If they refer to quantity, they are implicitly cardinal. If they name things in a sequence they are implicitly ordinal. All users of numbers have a grasp of the basic structure.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism is only noteworthy if logic has a privileged position in our ontology and epistemology [Hale/Wright]
     Full Idea: It is only if logic is metaphysically and epistemologically privileged that a reduction of mathematical theories to logical ones can be philosophically any more noteworthy than a reduction of any mathematical theory to any other.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 8)
     A reaction: It would be hard to demonstrate this privileged position, though intuitively there is nothing more basic in human rationality. That may be a fact about us, but it doesn't make logic basic to nature, which is where proper reduction should be heading.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The neo-Fregean is more optimistic than Frege about contextual definitions of numbers [Hale/Wright]
     Full Idea: The neo-Fregean takes a more optimistic view than Frege of the prospects for the kind of contextual explanation of the fundamental concepts of arithmetic and analysis (cardinals and reals), which he rejected in 'Grundlagen' 60-68.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §1)
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
     Full Idea: Two modern approaches to logicism are the quantificational approach of David Bostock, and the abstraction-free approach of Neil Tennant.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1 n2)
     A reaction: Hale and Wright mention these as alternatives to their own view. I merely catalogue them for further examination. My immediate reaction is that Bostock sounds hopeless and Tennant sounds interesting.
Neo-Fregeanism might be better with truth-makers, rather than quantifier commitment [Hale/Wright]
     Full Idea: A third way has been offered to 'make sense' of neo-Fregeanism: we should reject Quine's well-known criterion of ontological commitment in favour of one based on 'truth-maker theory'.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4 n19)
     A reaction: [The cite Ross Cameron for this] They reject this proposal, on the grounds that truth-maker theory is not sufficient to fix the grounding truth-conditions of statements.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Are neo-Fregeans 'maximalists' - that everything which can exist does exist? [Hale/Wright]
     Full Idea: It is claimed that neo-Fregeans are committed to 'maximalism' - that whatever can exist does.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4)
     A reaction: [The cite Eklund] They observe that maximalism denies contingent non-existence (of the £20 note I haven't got). There seems to be the related problem of 'hyperinflation', that if abstract objects are generated logically, the process is unstoppable.