Combining Philosophers

Ideas for Baron,S/Miller,K, Michael Dummett and Isaac Beeckman

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


14 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
A prime number is one which is measured by a unit alone [Dummett]
     Full Idea: A prime number is one which is measured by a unit alone.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 11)
     A reaction: We might say that the only way of 'reaching' or 'constructing' a prime is by incrementing by one till you reach it. That seems a pretty good definition. 64, for example, can be reached by a large number of different routes.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Addition of quantities is prior to ordering, as shown in cyclic domains like angles [Dummett]
     Full Idea: It is essential to a quantitative domain of any kind that there should be an operation of adding its elements; that this is more fundamental thaat that they should be linearly ordered by magnitude is apparent from cyclic domains like that of angles.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 22 'Quantit')
Ordinals seem more basic than cardinals, since we count objects in sequence [Dummett]
     Full Idea: It can be argued that the notion of ordinal numbers is more fundamental than that of cardinals. To count objects, we must count them in sequence. ..The theory of ordinals forms the substratum of Cantor's theory of cardinals.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 5)
     A reaction: Depends what you mean by 'fundamental'. I would take cardinality to be psychologically prior ('that is a lot of sheep'). You can't order people by height without first acquiring some people with differing heights. I vote for cardinals.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A number is a multitude composed of units [Dummett]
     Full Idea: A number is a multitude composed of units.
     From: Michael Dummett (Frege philosophy of mathematics [1991], 7 Def 2)
     A reaction: This is outdated by the assumption that 0 and 1 are also numbers, but if we say one is really just the 'unit' which is preliminary to numbers, and 0 is as bogus a number as i is, we might stick with the original Greek distinction.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
We understand 'there are as many nuts as apples' as easily by pairing them as by counting them [Dummett]
     Full Idea: A child understands 'there are just as many nuts as apples' as easily by pairing them off as by counting them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.12)
     A reaction: I find it very intriguing that you could know that two sets have the same number, without knowing any numbers. Is it like knowing two foreigners spoke the same words, without understanding them? Or is 'equinumerous' conceptually prior to 'number'?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
Platonists ruin infinity, which is precisely a growing structure which is never completed [Dummett]
     Full Idea: The platonist destroys the whole essence of infinity, which lies in the conception of a structure which is always in growth, precisely because the process of construction is never completed.
     From: Michael Dummett (Elements of Intuitionism [1977], p.57), quoted by Thomas J. McKay - Plural Predication
     A reaction: I don't warm to intuitionism, but I warm to this conception of infinity. Completed infinities are convenient reifications for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Intuitionists find the Incompleteness Theorem unsurprising, since proof is intuitive, not formal [Dummett]
     Full Idea: In the intuitionist view, the notion of an intuitive proof cannot be expected to coincide with that of a proof in a formal system, and Gödel's incompleteness theorem is thus unsurprising from an intuitionist point of view.
     From: Michael Dummett (Frege Philosophy of Language (2nd ed) [1973], Ch.14)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
The identity of a number may be fixed by something outside structure - by counting [Dummett]
     Full Idea: The identity of a mathematical object may sometimes be fixed by its relation to what lies outside the structure to which it belongs. It is more fundamental to '3' that if certain objects are counted, there are three of them.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This strikes me as Dummett being pushed (by his dislike of the purely abstract picture given by structuralism) back to a rather empiricist and physical view of numbers, though he would totally deny that.
Numbers aren't fixed by position in a structure; it won't tell you whether to start with 0 or 1 [Dummett]
     Full Idea: The number 0 is not differentiated from 1 by its position in a progression, otherwise there would be no difference between starting with 0 and starting with 1. That is enough to show that numbers are not identifiable just as positions in structures.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch. 5)
     A reaction: This sounds conclusive, but doesn't feel right. If numbers are a structure, then where you 'start' seems unimportant. Where do you 'start' in St Paul's Cathedral? Starting sounds like a constructivist concept for number theory.
The number 4 has different positions in the naturals and the wholes, with the same structure [Dummett]
     Full Idea: The number 4 cannot be characterized solely by its position in a system, because it has different positions in the system of natural numbers and that of the positive whole numbers, whereas these systems have the very same structure.
     From: Michael Dummett (The Philosophy of Mathematics [1998], 6.1)
     A reaction: Dummett seems to think this is fairly decisive against structuralism. There is also the structure of the real numbers. We will solve this by saying that the wholes are abstracted from the naturals, which are abstracted from the reals. Job done.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Set theory isn't part of logic, and why reduce to something more complex? [Dummett]
     Full Idea: The two frequent modern objects to logicism are that set theory is not part of logic, or that it is of no interest to 'reduce' a mathematical theory to another, more complex, one.
     From: Michael Dummett (Frege philosophy of mathematics [1991], Ch.18)
     A reaction: Dummett says these are irrelevant (see context). The first one seems a good objection. The second one less so, because whether something is 'complex' is a quite different issue from whether it is ontologically more fundamental.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
For intuitionists it is constructed proofs (which take time) which make statements true [Dummett]
     Full Idea: For an intuitionist a mathematical statement is rendered true or false by a proof or disproof, that is, by a construction, and constructions are effected in time.
     From: Michael Dummett (Elements of Intuitionism [1977], p.336), quoted by Shaughan Lavine - Understanding the Infinite VI.2
     A reaction: Lavine is quoting this to draw attention to the difficulties of thinking of it as all taking place 'in time', especially when dealing with infinities.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism says that totality of numbers is only potential, but is still determinate [Dummett]
     Full Idea: From the intuitionist point of view natural numbers are mental constructions, so their totality is only potential, but it is neverthless a fully determinate totality.
     From: Michael Dummett (Frege Philosophy of Language (2nd ed) [1973], Ch.14)
     A reaction: This could only be if the means of constructing the numbers was fully determinate, so how does that situation come about?
Intuitionists rely on the proof of mathematical statements, not their truth [Dummett]
     Full Idea: The intuitionist account of the meaning of mathematical statements does not employ the notion of a statement's being true, but only that of something's being a proof of the statement.
     From: Michael Dummett (Truth and the Past [2001], 2)
     A reaction: I remain unconvinced that anyone could give an account of proof that didn't discreetly employ the notion of truth. What are we to make of "we suspect this is true, but no one knows how to prove it?" (e.g. Goldbach's Conjecture).