Combining Philosophers

Ideas for Edmund Husserl, Friedrich Engels and Ernst Zermelo

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


5 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
In ZF, the Burali-Forti Paradox proves that there is no set of all ordinals [Zermelo, by Hart,WD]
     Full Idea: In Zermelo's set theory, the Burali-Forti Paradox becomes a proof that there is no set of all ordinals (so 'is an ordinal' has no extension).
     From: report of Ernst Zermelo (Investigations in the Foundations of Set Theory I [1908]) by William D. Hart - The Evolution of Logic 3
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
0 is not a number, as it answers 'how many?' negatively [Husserl, by Dummett]
     Full Idea: Husserl contends that 0 is not a number, on the grounds that 'nought' is a negative answer to the question 'how many?'.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894], p.144) by Michael Dummett - Frege philosophy of mathematics Ch.8
     A reaction: I seem to be in a tiny minority in thinking that Husserl may have a good point. One apple is different from one orange, but no apples are the same as no oranges. That makes 0 a very peculiar number. See Idea 9838.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
Multiplicity in general is just one and one and one, etc. [Husserl]
     Full Idea: Multiplicity in general is no more than something and something and something, etc.; ..or more briefly, one and one and one, etc.
     From: Edmund Husserl (Philosophy of Arithmetic [1894], p.85), quoted by Gottlob Frege - Review of Husserl's 'Phil of Arithmetic'
     A reaction: Frege goes on to attack this idea fairly convincingly. It seems obvious that it is hard to say that you have seventeen items, if the only numberical concept in your possession is 'one'. How would you distinguish 17 from 16? What makes the ones 'multiple'?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Husserl said counting is more basic than Frege's one-one correspondence [Husserl, by Heck]
     Full Idea: Husserl famously argued that one should not explain number in terms of equinumerosity (or one-one correspondence), but should explain equinumerosity in terms of sameness of number, which should be characterised in terms of counting.
     From: report of Edmund Husserl (Philosophy of Arithmetic [1894]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: [Heck admits he hasn't read the Husserl] I'm very sympathetic to Husserl, though nearly all modern thinking favours Frege. Counting connects numbers to their roots in the world. Mathematicians seem oblivious of such things.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / e. Countable infinity
Zermelo realised that Choice would facilitate the sort of 'counting' Cantor needed [Zermelo, by Lavine]
     Full Idea: Zermelo realised that the Axiom of Choice (based on arbitrary functions) could be used to 'count', in the Cantorian sense, those collections that had given Cantor so much trouble, which restored a certain unity to set theory.
     From: report of Ernst Zermelo (Proof that every set can be well-ordered [1904]) by Shaughan Lavine - Understanding the Infinite I