Combining Philosophers

Ideas for Gottfried Leibniz, Richard Dedekind and Friedrich Schelling

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


33 ideas

6. Mathematics / A. Nature of Mathematics / 2. Geometry
Circles must be bounded, so cannot be infinite [Leibniz]
     Full Idea: An infinite circle is impossible, since any circle is bounded by its circumference.
     From: Gottfried Leibniz (Dialogue on human freedom and origin of evil [1695], p.114)
     A reaction: This is interesting if one is asking what the essence of a circle must be. If is tempting to say merely that the radii must be equal, but can they have the length of some vast transfinite number? The circumference must be 2π bigger.
Geometry, unlike sensation, lets us glimpse eternal truths and their necessity [Leibniz]
     Full Idea: What I value most in geometry, considered as a contemplative study, is its letting us glimpse the true source of eternal truths and of the way in which we can come to grasp their necessity, which is something confused sensory images cannot reveal.
     From: Gottfried Leibniz (New Essays on Human Understanding [1704], 4.12)
     A reaction: This is strikingly straight out of Plato. We should not underestimate this idea, though nowadays it is with us, but with geometry replaced by mathematical logic.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are free creations of the human mind, to understand differences [Dedekind]
     Full Idea: Numbers are free creations of the human mind; they serve as a means of apprehending more easily and more sharply the difference of things.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: Does this fit real numbers and complex numbers, as well as natural numbers? Frege was concerned by the lack of objectivity in this sort of view. What sort of arithmetic might the Martians have created? Numbers register sameness too.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
Dedekind defined the integers, rationals and reals in terms of just the natural numbers [Dedekind, by George/Velleman]
     Full Idea: It was primarily Dedekind's accomplishment to define the integers, rationals and reals, taking only the system of natural numbers for granted.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by A.George / D.J.Velleman - Philosophies of Mathematics Intro
Ordinals can define cardinals, as the smallest ordinal that maps the set [Dedekind, by Heck]
     Full Idea: Dedekind and Cantor said the cardinals may be defined in terms of the ordinals: The cardinal number of a set S is the least ordinal onto whose predecessors the members of S can be mapped one-one.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 5
Order, not quantity, is central to defining numbers [Dedekind, by Monk]
     Full Idea: Dedekind said that the notion of order, rather than that of quantity, is the central notion in the definition of number.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ray Monk - Bertrand Russell: Spirit of Solitude Ch.4
     A reaction: Compare Aristotle's nice question in Idea 646. My intuition is that quantity comes first, because I'm not sure HOW you could count, if you didn't think you were changing the quantity each time. Why does counting go in THAT particular order? Cf. Idea 8661.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Dedekind's ordinals are just members of any progression whatever [Dedekind, by Russell]
     Full Idea: Dedekind's ordinals are not essentially either ordinals or cardinals, but the members of any progression whatever.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §243
     A reaction: This is part of Russell's objection to Dedekind's structuralism. The question is always why these beautiful structures should actually be considered as numbers. I say, unlike Russell, that the connection to counting is crucial.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
We want the essence of continuity, by showing its origin in arithmetic [Dedekind]
     Full Idea: It then only remained to discover its true origin in the elements of arithmetic and thus at the same time to secure a real definition of the essence of continuity.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], Intro)
     A reaction: [He seeks the origin of the theorem that differential calculus deals with continuous magnitude, and he wants an arithmetical rather than geometrical demonstration; the result is his famous 'cut'].
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
A cut between rational numbers creates and defines an irrational number [Dedekind]
     Full Idea: Whenever we have to do a cut produced by no rational number, we create a new, an irrational number, which we regard as completely defined by this cut.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §4)
     A reaction: Fine quotes this to show that the Dedekind Cut creates the irrational numbers, rather than hitting them. A consequence is that the irrational numbers depend on the rational numbers, and so can never be identical with any of them. See Idea 10573.
Dedekind's axiom that his Cut must be filled has the advantages of theft over honest toil [Dedekind, by Russell]
     Full Idea: Dedekind set up the axiom that the gap in his 'cut' must always be filled …The method of 'postulating' what we want has many advantages; they are the same as the advantages of theft over honest toil. Let us leave them to others.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - Introduction to Mathematical Philosophy VII
     A reaction: This remark of Russell's is famous, and much quoted in other contexts, but I have seen the modern comment that it is grossly unfair to Dedekind.
Dedekind says each cut matches a real; logicists say the cuts are the reals [Dedekind, by Bostock]
     Full Idea: One view, favoured by Dedekind, is that the cut postulates a real number for each cut in the rationals; it does not identify real numbers with cuts. ....A view favoured by later logicists is simply to identify a real number with a cut.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
     A reaction: Dedekind is the patriarch of structuralism about mathematics, so he has little interest in the existenc of 'objects'.
I say the irrational is not the cut itself, but a new creation which corresponds to the cut [Dedekind]
     Full Idea: Of my theory of irrationals you say that the irrational number is nothing else than the cut itself, whereas I prefer to create something new (different from the cut), which corresponds to the cut. We have the right to claim such a creative power.
     From: Richard Dedekind (Letter to Weber [1888], 1888 Jan), quoted by Stewart Shapiro - Philosophy of Mathematics 5.4
     A reaction: Clearly a cut will not locate a unique irrational number, so something more needs to be done. Shapiro remarks here that for Dedekind numbers are objects.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
There is no multiplicity without true units [Leibniz]
     Full Idea: There is no multiplicity without true units.
     From: Gottfried Leibniz (Letters to Antoine Arnauld [1686], 1687.04.30)
     A reaction: Hence real numbers do not embody 'multiplicity'. So either they don't 'embody' anything, or they embody 'magnitudes'. Does this give two entirely different notions, of measure of multiplicity and measures of magnitude?
Number cannot be defined as addition of ones, since that needs the number; it is a single act of abstraction [Fine,K on Leibniz]
     Full Idea: Leibniz's talk of the addition of ones cannot define number, since it cannot be specified how often they are added without using the number itself. Number must be an organic unity of ones, achieved by a single act of abstraction.
     From: comment on Gottfried Leibniz (works [1690]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §1
     A reaction: I doubt whether 'abstraction' is the right word for this part of the process. It seems more like a 'gestalt'. The first point is clearly right, that it is the wrong way round if you try to define number by means of addition.
Only whole numbers are multitudes of units [Leibniz]
     Full Idea: The definition of 'number' as a multitude of units is appropriate only for whole numbers.
     From: Gottfried Leibniz (New Essays on Human Understanding [1704], 2.15)
     A reaction: One can also define rational numbers by making use of units, but the strategy breaks down with irrational numbers like root-2 and pi. I still say the concept of a unit is the basis of numbers. Without whole numbers, we wouldn't call the real 'numbers'.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting we see the human ability to relate, correspond and represent [Dedekind]
     Full Idea: If we scrutinize closely what is done in counting an aggregate of things, we see the ability of the mind to relate things to things, to let a thing correspond to a thing, or to represent a thing by a thing, without which no thinking is possible.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], Pref)
     A reaction: I don't suppose it occurred to Dedekind that he was reasserting Hume's observation about the fundamental psychology of thought. Is the origin of our numerical ability of philosophical interest?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic is just the consequence of counting, which is the successor operation [Dedekind]
     Full Idea: I regard the whole of arithmetic as a necessary, or at least natural, consequence of the simplest arithmetic act, that of counting, and counting itself is nothing else than the successive creation of the infinite series of positive integers.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], §1)
     A reaction: Thus counting roots arithmetic in the world, the successor operation is the essence of counting, and the Dedekind-Peano axioms are built around successors, and give the essence of arithmetic. Unfashionable now, but I love it. Intransitive counting?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Everything is subsumed under number, which is a metaphysical statics of the universe, revealing powers [Leibniz]
     Full Idea: There is nothing which is not subsumable under number; number is therefore a fundamental metaphysical form, and arithmetic a sort of statics of the universe, in which the powers of things are revealed.
     From: Gottfried Leibniz (Towards a Universal Characteristic [1677], p.17)
     A reaction: I take numbers to be a highly generalised and idealised description of an aspect of reality (seen as mainly constituted by countable substances). Seeing reality as processes doesn't lead us to number. So I like this idea.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / b. Mark of the infinite
A system S is said to be infinite when it is similar to a proper part of itself [Dedekind]
     Full Idea: A system S is said to be infinite when it is similar to a proper part of itself.
     From: Richard Dedekind (Nature and Meaning of Numbers [1888], V.64)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
I strongly believe in the actual infinite, which indicates the perfections of its author [Leibniz]
     Full Idea: I am so much for the actual infinite that instead of admitting that nature abhors it, as is commonly said, I hold that it affects nature everywhere in order to indicate the perfections of its author.
     From: Gottfried Leibniz (Reply to Foucher [1693], p.99)
     A reaction: I would have thought that, for Leibniz, while infinities indicate the perfections of their author, that is not the reason why they exist. God wasn't, presumably, showing off. Leibniz does not think we can actually know these infinities.
I don't admit infinite numbers, and consider infinitesimals to be useful fictions [Leibniz]
     Full Idea: Notwithstanding my infinitesimal calculus, I do not admit any real infinite numbers, even though I confess that the multitude of things surpasses any finite number, or rather any number. ..I consider infinitesimal quantities to be useful fictions.
     From: Gottfried Leibniz (Letters to Samuel Masson [1716], 1716)
     A reaction: With the phrase 'useful fictions' we seem to have jumped straight into Harty Field. I'm with Leibniz on this one. The history of mathematics is a series of ingenious inventions, whenever they seem to make further exciting proofs possible.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
The continuum is not divided like sand, but folded like paper [Leibniz, by Arthur,R]
     Full Idea: Leibniz said the division of the continuum should not be conceived 'to be like the division of sand into grains, but like that of a tunic or a sheet of paper into folds'.
     From: report of Gottfried Leibniz (works [1690], A VI iii 555) by Richard T.W. Arthur - Leibniz
     A reaction: This from the man who invented calculus. This thought might apply well to the modern physicist's concept of a 'field'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Nature uses the infinite everywhere [Leibniz]
     Full Idea: Nature uses the infinite in everything it does.
     From: Gottfried Leibniz (works [1690]), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: [The quote can be tracked through Kitcher's footnote] He seems to have had in mind the infinitely small.
A tangent is a line connecting two points on a curve that are infinitely close together [Leibniz]
     Full Idea: We have only to keep in mind that to find a tangent means to draw a line that connects two points of a curve at an infinitely small distance.
     From: Gottfried Leibniz (works [1690]), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.1
     A reaction: [The quote can be tracked through Kitcher's footnote]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
If x changes by less and less, it must approach a limit [Dedekind]
     Full Idea: If in the variation of a magnitude x we can for every positive magnitude δ assign a corresponding position from and after which x changes by less than δ then x approaches a limiting value.
     From: Richard Dedekind (Continuity and Irrational Numbers [1872], p.27), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.7
     A reaction: [Kitcher says he 'showed' this, rather than just stating it]
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
We shouldn't just accept Euclid's axioms, but try to demonstrate them [Leibniz]
     Full Idea: Far from approving the acceptance of doubtful principles, I want to see an attempt to demonstrate even Euclid's axioms, as some of the ancients tried to do.
     From: Gottfried Leibniz (New Essays on Human Understanding [1704], 1.02)
     A reaction: This is the old idea of axioms, as a bunch of basic self-evident truths, rather than the modern idea of an economical set of propositions from which to make deductions. Demonstration has to stop somewhere.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
We know mathematical axioms, such as subtracting equals from equals leaves equals, by a natural light [Leibniz]
     Full Idea: It is by the natural light that the axioms of mathematics are recognised. If we take away the same quantity from two equal things, …a thing we can easily predict without having experienced it.
     From: Gottfried Leibniz (Letters to Queen Charlotte [1702], p.189)
     A reaction: He also says two equal weights will keep a balance level. Plato thinks his slave boy understands halving an area by the natural light, but that is just as likely to be experience. It is too easy to attribut thoughts to a 'natural light'.
Dedekind gives a base number which isn't a successor, then adds successors and induction [Dedekind, by Hart,WD]
     Full Idea: Dedekind's natural numbers: an object is in a set (0 is a number), a function sends the set one-one into itself (numbers have unique successors), the object isn't a value of the function (it isn't a successor), plus induction.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by William D. Hart - The Evolution of Logic 5
     A reaction: Hart notes that since this refers to sets of individuals, it is a second-order account of numbers, what we now call 'Second-Order Peano Arithmetic'.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Zero is a member, and all successors; numbers are the intersection of sets satisfying this [Dedekind, by Bostock]
     Full Idea: Dedekind's idea is that the set of natural numbers has zero as a member, and also has as a member the successor of each of its members, and it is the smallest set satisfying this condition. It is the intersection of all sets satisfying the condition.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by David Bostock - Philosophy of Mathematics 4.4
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Categoricity implies that Dedekind has characterised the numbers, because it has one domain [Rumfitt on Dedekind]
     Full Idea: It is Dedekind's categoricity result that convinces most of us that he has articulated our implicit conception of the natural numbers, since it entitles us to speak of 'the' domain (in the singular, up to isomorphism) of natural numbers.
     From: comment on Richard Dedekind (Nature and Meaning of Numbers [1888]) by Ian Rumfitt - The Boundary Stones of Thought 9.1
     A reaction: The main rival is set theory, but that has an endlessly expanding domain. He points out that Dedekind needs second-order logic to achieve categoricity. Rumfitt says one could also add to the 1st-order version that successor is an ancestral relation.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Induction is proved in Dedekind, an axiom in Peano; the latter seems simpler and clearer [Dedekind, by Russell]
     Full Idea: Dedekind proves mathematical induction, while Peano regards it as an axiom, ...and Peano's method has the advantage of simplicity, and a clearer separation between the particular and the general propositions of arithmetic.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Bertrand Russell - The Principles of Mathematics §241
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Dedekind originated the structuralist conception of mathematics [Dedekind, by MacBride]
     Full Idea: Dedekind is the philosopher-mathematician with whom the structuralist conception originates.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888], §3 n13) by Fraser MacBride - Structuralism Reconsidered
     A reaction: Hellman says the idea grew naturally out of modern mathematics, and cites Hilbert's belief that furniture would do as mathematical objects.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / b. Varieties of structuralism
Dedekindian abstraction talks of 'positions', where Cantorian abstraction talks of similar objects [Dedekind, by Fine,K]
     Full Idea: Dedekindian abstraction says mathematical objects are 'positions' in a model, while Cantorian abstraction says they are the result of abstracting on structurally similar objects.
     From: report of Richard Dedekind (Nature and Meaning of Numbers [1888]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §6
     A reaction: The key debate among structuralists seems to be whether or not they are committed to 'objects'. Fine rejects the 'austere' version, which says that objects have no properties. Either version of structuralism can have abstraction as its basis.