Combining Philosophers

Ideas for H.Putnam/P.Oppenheim, H.H. Price and Paul Benacerraf

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


13 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematical truth is always compromising between ordinary language and sensible epistemology [Benacerraf]
     Full Idea: Most accounts of the concept of mathematical truth can be identified with serving one or another of either semantic theory (matching it to ordinary language), or with epistemology (meshing with a reasonable view) - always at the expense of the other.
     From: Paul Benacerraf (Mathematical Truth [1973], Intro)
     A reaction: The gist is that language pulls you towards platonism, and epistemology pulls you towards empiricism. He argues that the semantics must give ground. He's right.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Obtaining numbers by abstraction is impossible - there are too many; only a rule could give them, in order [Benacerraf]
     Full Idea: Not all numbers could possibly have been learned à la Frege-Russell, because we could not have performed that many distinct acts of abstraction. Somewhere along the line a rule had to come in to enable us to obtain more numbers, in the natural order.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.165)
     A reaction: Follows on from Idea 13411. I'm not sure how Russell would deal with this, though I am sure his account cannot be swept aside this easily. Nevertheless this seems powerful and convincing, approaching the problem through the epistemology.
We must explain how we know so many numbers, and recognise ones we haven't met before [Benacerraf]
     Full Idea: Both ordinalists and cardinalists, to account for our number words, have to account for the fact that we know so many of them, and that we can 'recognize' numbers which we've neither seen nor heard.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.166)
     A reaction: This seems an important contraint on any attempt to explain numbers. Benacerraf is an incipient structuralist, and here presses the importance of rules in our grasp of number. Faced with 42,578,645, we perform an act of deconstruction to grasp it.
There are no such things as numbers [Benacerraf]
     Full Idea: There are no such things as numbers.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], IIIC)
     A reaction: Mill said precisely the same (Idea 9794). I think I agree. There has been a classic error of reification. An abstract pattern is not an object. If I coin a word for all the three-digit numbers in our system, I haven't created a new 'object'.
Numbers can't be sets if there is no agreement on which sets they are [Benacerraf]
     Full Idea: The fact that Zermelo and Von Neumann disagree on which particular sets the numbers are is fatal to the view that each number is some particular set.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], II)
     A reaction: I agree. A brilliantly simple argument. There is the possibility that one of the two accounts is correct (I would vote for Zermelo), but it is not actually possible to prove it.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
If numbers are basically the cardinals (Frege-Russell view) you could know some numbers in isolation [Benacerraf]
     Full Idea: If we accept the Frege-Russell analysis of number (the natural numbers are the cardinals) as basic and correct, one thing which seems to follow is that one could know, say, three, seventeen, and eight, but no other numbers.
     From: Paul Benacerraf (Logicism, Some Considerations (PhD) [1960], p.164)
     A reaction: It seems possible that someone might only know those numbers, as the patterns of members of three neighbouring families (the only place where they apply number). That said, this is good support for the priority of ordinals. See Idea 13412.
Benacerraf says numbers are defined by their natural ordering [Benacerraf, by Fine,K]
     Full Idea: Benacerraf thinks of numbers as being defined by their natural ordering.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Kit Fine - Cantorian Abstraction: Recon. and Defence §5
     A reaction: My intuition is that cardinality is logically prior to ordinality, since that connects better with the experienced physical world of objects. Just as the fact that people have different heights must precede them being arranged in height order.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
To understand finite cardinals, it is necessary and sufficient to understand progressions [Benacerraf, by Wright,C]
     Full Idea: Benacerraf claims that the concept of a progression is in some way the fundamental arithmetical notion, essential to understanding the idea of a finite cardinal, with a grasp of progressions sufficing for grasping finite cardinals.
     From: report of Paul Benacerraf (What Numbers Could Not Be [1965]) by Crispin Wright - Frege's Concept of Numbers as Objects 3.xv
     A reaction: He cites Dedekind (and hence the Peano Axioms) as the source of this. The interest is that progression seems to be fundamental to ordianls, but this claims it is also fundamental to cardinals. Note that in the first instance they are finite.
A set has k members if it one-one corresponds with the numbers less than or equal to k [Benacerraf]
     Full Idea: Any set has k members if and only if it can be put into one-to-one correspondence with the set of numbers less than or equal to k.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: This is 'Ernie's' view of things in the paper. This defines the finite cardinal numbers in terms of the finite ordinal numbers. He has already said that the set of numbers is well-ordered.
To explain numbers you must also explain cardinality, the counting of things [Benacerraf]
     Full Idea: I would disagree with Quine. The explanation of cardinality - i.e. of the use of numbers for 'transitive counting', as I have called it - is part and parcel of the explication of number.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I n2)
     A reaction: Quine says numbers are just a progression, with transitive counting as a bonus. Interesting that Benacerraf identifies cardinality with transitive counting. I would have thought it was the possession of numerical quantity, not ascertaining it.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
We can count intransitively (reciting numbers) without understanding transitive counting of items [Benacerraf]
     Full Idea: Learning number words in the right order is counting 'intransitively'; using them as measures of sets is counting 'transitively'. ..It seems possible for someone to learn the former without learning the latter.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Scruton's nice question (Idea 3907) is whether you could be said to understand numbers if you could only count intransitively. I would have thought such a state contained no understanding at all of numbers. Benacerraf agrees.
Someone can recite numbers but not know how to count things; but not vice versa [Benacerraf]
     Full Idea: It seems that it is possible for someone to learn to count intransitively without learning to count transitively. But not vice versa.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: Benacerraf favours the priority of the ordinals. It is doubtful whether you have grasped cardinality properly if you don't know how to count things. Could I understand 'he has 27 sheep', without understanding the system of natural numbers?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The application of a system of numbers is counting and measurement [Benacerraf]
     Full Idea: The application of a system of numbers is counting and measurement.
     From: Paul Benacerraf (What Numbers Could Not Be [1965], I)
     A reaction: A simple point, but it needs spelling out. Counting seems prior, in experience if not in logic. Measuring is a luxury you find you can indulge in (by imagining your quantity) split into parts, once you have mastered counting.