Combining Philosophers

Ideas for Hermarchus, Bertrand Russell and George Boole

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


15 ideas

6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
It seems absurd to prove 2+2=4, where the conclusion is more certain than premises [Russell]
     Full Idea: It is an apparent absurdity in proceeding ...through many rather recondite propositions of symbolic logic, to the 'proof' of such truisms as 2+2=4: for it is plain that the conclusion is more certain than the premises, and the supposed proof seems futile.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
     A reaction: Famously, 'Principia Mathematica' proved this fact at enormous length. I wonder if this thought led Moore to his common sense view of his own hand - the conclusion being better than the sceptical arguments?
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Geometry is united by the intuitive axioms of projective geometry [Russell, by Musgrave]
     Full Idea: Russell sought what was common to Euclidean and non-Euclidean systems, found it in the axioms of projective geometry, and took a Kantian view of them.
     From: report of Bertrand Russell (Foundations of Geometry [1897]) by Alan Musgrave - Logicism Revisited §4
     A reaction: Russell's work just preceded Hilbert's famous book. Tarski later produced some logical axioms for geometry.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The definition of order needs a transitive relation, to leap over infinite intermediate terms [Russell]
     Full Idea: Order must be defined by means of a transitive relation, since only such a relation is able to leap over an infinite number of intermediate terms. ...Without it we would not be able to define the order of magnitude among fractions.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], IV)
Axiom of Archimedes: a finite multiple of a lesser magnitude can always exceed a greater [Russell]
     Full Idea: The Axiom of Archimedes asserts that, given any two magnitudes of a kind, some finite multiple of the lesser exceeds the greater.
     From: Bertrand Russell (The Principles of Mathematics [1903], §168 n*)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Russell tried to replace Peano's Postulates with the simple idea of 'class' [Russell, by Monk]
     Full Idea: What Russell tried to show [at this time] was that Peano's Postulates (based on 'zero', 'number' and 'successor') could in turn be dispensed with, and the whole edifice built upon nothing more than the notion of 'class'.
     From: report of Bertrand Russell (The Principles of Mathematics [1903]) by Ray Monk - Bertrand Russell: Spirit of Solitude Ch.4
     A reaction: (See Idea 5897 for Peano) Presumably you can't afford to lose the notion of 'successor' in the account. If you build any theory on the idea of classes, you are still required to explain why a particular is a member of that class, and not another.
Dedekind failed to distinguish the numbers from other progressions [Shapiro on Russell]
     Full Idea: Dedekind's demonstrations nowhere - not even where he comes to cardinals - involve any property distinguishing numbers from other progressions.
     From: comment on Bertrand Russell (The Principles of Mathematics [1903], p.249) by Stewart Shapiro - Philosophy of Mathematics 5.4
     A reaction: Shapiro notes that his sounds like Frege's Julius Caesar problem, of ensuring that your definition really does capture a number. Russell is objecting to mathematical structuralism.
Any founded, non-repeating series all reachable in steps will satisfy Peano's axioms [Russell]
     Full Idea: Given any series which is endless, contains no repetitions, has a beginning, and has no terms that cannot be reached from the beginning in a finite number of steps, we have a set of terms verifying Peano's axioms.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
'0', 'number' and 'successor' cannot be defined by Peano's axioms [Russell]
     Full Idea: That '0', 'number' and 'successor' cannot be defined by means of Peano's five axioms, but must be independently understood.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], I)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Denying mathematical induction gave us the transfinite [Russell]
     Full Idea: The transfinite was obtained by denying mathematical induction.
     From: Bertrand Russell (The Principles of Mathematics [1903], §310)
     A reaction: This refers to the work of Dedekind and Cantor. This raises the question (about which thinkers have ceased to care, it seems), of whether it is rational to deny mathematical induction.
Finite numbers, unlike infinite numbers, obey mathematical induction [Russell]
     Full Idea: Finite numbers obey the law of mathematical induction: infinite numbers do not.
     From: Bertrand Russell (The Principles of Mathematics [1903], §183)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / b. Greek arithmetic
Numbers were once defined on the basis of 1, but neglected infinities and + [Russell]
     Full Idea: It used to be common to define numbers by means of 1, with 2 being 1+1 and so on. But this method was only applicable to finite numbers, made a tiresome different between 1 and the other numbers, and left + unexplained.
     From: Bertrand Russell (The Principles of Mathematics [1903], §109)
     A reaction: Am I alone in hankering after the old approach? The idea of a 'unit' is what connected numbers to the patterns of the world. Russell's approach invites unneeded platonism. + is just 'and', and infinities are fictional extrapolations. Sounds fine to me.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Numbers are properties of classes [Russell]
     Full Idea: Numbers are to be regarded as properties of classes.
     From: Bertrand Russell (The Principles of Mathematics [1903], §109)
     A reaction: If properties are then defined extensionally as classes, you end up with numbers as classes of classes.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
A number is something which characterises collections of the same size [Russell]
     Full Idea: The number 3 is something which all trios have in common, and which distinguishes them from other collections. A number is something that characterises certain collections, namely, those that have that number.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], II)
     A reaction: This is a verbal summary of the Fregean view of numbers, which marks the arrival of set theory as the way arithmetic will in future be characterised. The question is whether set theory captures all aspects of numbers. Does it give a tool for counting?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
What matters is the logical interrelation of mathematical terms, not their intrinsic nature [Russell]
     Full Idea: What matters in mathematics is not the intrinsic nature of our terms, but the logical nature of their interrelations.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], VI)
     A reaction: If they have an instrinsic nature, that would matter far more, because that would dictate the interrelations. Structuralism seems to require that they don't actually have any intrinsic nature.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Ordinals can't be defined just by progression; they have intrinsic qualities [Russell]
     Full Idea: It is impossible that the ordinals should be, as Dedekind suggests, nothing but the terms of such relations as constitute a progression. If they are anything at all, they must be intrinsically something.
     From: Bertrand Russell (The Principles of Mathematics [1903], §242)
     A reaction: This is the obvious platonist response to the incipient doctrine of structuralism. We have a chicken-and-egg problem. Bricks need intrinsic properties to make a structure. A structure isomorphic to numbers is not thereby the numbers.