Combining Philosophers

Ideas for Hermarchus, Harold Hodes and Achille Varzi

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


4 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
     Full Idea: I take the view that (agreeing with Aristotle) mathematics only requires the notion of a potential infinity, ...and that mathematics is higher-order modal logic.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: Modern 'modal' accounts of mathematics I take to be heirs of 'if-thenism', which seems to have been Russell's development of Frege's original logicism. I'm beginning to think it is right. But what is the subject-matter of arithmetic?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
     Full Idea: The mathematical object-theorist says a number is an object that represents a cardinality quantifier, with the representation relation as the entire essence of the nature of such objects as cardinal numbers like 4.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: [compressed] This a classic case of a theory beginning to look dubious once you spell it our precisely. The obvious thought is to make do with the numerical quantifiers, and dispense with the objects. Do other quantifiers need objects to support them?
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
     Full Idea: The dogmatic Frege is more right than wrong in denying that numerical terms can stand for numerical quantifiers, for there cannot be a language in which object-quantifiers and objects are simultaneously viewed as level zero.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.142)
     A reaction: Subtle. We see why Frege goes on to say that numbers are level zero (i.e. they are objects). We are free, it seems, to rewrite sentences containing number terms to suit whatever logical form appeals. Numbers are just quantifiers?