Combining Philosophers

Ideas for Hermarchus, Kit Fine and Yale Kamisar

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


13 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Dedekind cuts lead to the bizarre idea that there are many different number 1's [Fine,K]
     Full Idea: Because of Dedekind's definition of reals by cuts, there is a bizarre modern doctrine that there are many 1's - the natural number 1, the rational number 1, the real number 1, and even the complex number 1.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
     A reaction: See Idea 10572.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
Why should a Dedekind cut correspond to a number? [Fine,K]
     Full Idea: By what right can Dedekind suppose that there is a number corresponding to any pair of irrationals that constitute an irrational cut?
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Unless we know whether 0 is identical with the null set, we create confusions [Fine,K]
     Full Idea: What is the union of the singleton {0}, of zero, and the singleton {φ}, of the null set? Is it the one-element set {0}, or the two-element set {0, φ}? Unless the question of identity between 0 and φ is resolved, we cannot say.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The existence of numbers is not a matter of identities, but of constituents of the world [Fine,K]
     Full Idea: On saying that a particular number exists, we are not saying that there is something identical to it, but saying something about its status as a genuine constituent of the world.
     From: Kit Fine (The Question of Ontology [2009], p.168)
     A reaction: This is aimed at Frege's criterion of identity, which is to be an element in an identity relation, such as x = y. Fine suggests that this only gives a 'trivial' notion of existence, when he is interested in a 'thick' sense of 'exists'.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
If Hume's Principle can define numbers, we needn't worry about its truth [Fine,K]
     Full Idea: Neo-Fregeans have thought that Hume's Principle, and the like, might be definitive of number and therefore not subject to the usual epistemological worries over its truth.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.310)
     A reaction: This seems to be the underlying dream of logicism - that arithmetic is actually brought into existence by definitions, rather than by truths derived from elsewhere. But we must be able to count physical objects, as well as just counting numbers.
Hume's Principle is either adequate for number but fails to define properly, or vice versa [Fine,K]
     Full Idea: The fundamental difficulty facing the neo-Fregean is to either adopt the predicative reading of Hume's Principle, defining numbers, but inadequate, or the impredicative reading, which is adequate, but not really a definition.
     From: Kit Fine (Precis of 'Limits of Abstraction' [2005], p.312)
     A reaction: I'm not sure I understand this, but the general drift is the difficulty of building a system which has been brought into existence just by definition.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set-theoretic imperialists think sets can represent every mathematical object [Fine,K]
     Full Idea: Set-theoretic imperialists think that it must be possible to represent every mathematical object as a set.
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 1)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
It is plausible that x^2 = -1 had no solutions before complex numbers were 'introduced' [Fine,K]
     Full Idea: It is not implausible that before the 'introduction' of complex numbers, it would have been incorrect for mathematicians to claim that there was a solution to the equation 'x^2 = -1' under a completely unrestricted understanding of 'there are'.
     From: Kit Fine (The Question of Ontology [2009])
     A reaction: I have adopted this as the crucial test question for anyone's attitude to platonism in mathematics. I take it as obvious that complex numbers were simply invented so that such equations could be dealt with. They weren't 'discovered'!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
The indispensability argument shows that nature is non-numerical, not the denial of numbers [Fine,K]
     Full Idea: Arguments such as the dispensability argument are attempting to show something about the essentially non-numerical character of physical reality, rather than something about the nature or non-existence of the numbers themselves.
     From: Kit Fine (The Question of Ontology [2009], p.160)
     A reaction: This is aimed at Hartry Field. If Quine was right, and we only believe in numbers because of our science, and then Field shows our science doesn't need it, then Fine would be wrong. Quine must be wrong, as well as Field.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicists say mathematics can be derived from definitions, and can be known that way [Fine,K]
     Full Idea: Logicists traditionally claim that the theorems of mathematics can be derived by logical means from the relevant definitions of the terms, and that these theorems are epistemically innocent (knowable without Kantian intuition or empirical confirmation).
     From: Kit Fine (Replies on 'Limits of Abstraction' [2005], 2)
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Proceduralism offers a version of logicism with no axioms, or objects, or ontological commitment [Fine,K]
     Full Idea: My Proceduralism offers axiom-free foundations for mathematics. Axioms give way to the stipulation of procedures. We obtain a form of logicism, but with a procedural twist, and with a logic which is ontologically neutral, and no assumption of objects.
     From: Kit Fine (Our Knowledge of Mathematical Objects [2005], 1)
     A reaction: [See Ideas 9222 and 9223 for his Proceduralism] Sounds like philosophical heaven. We get to take charge of mathematics, without the embarrassment of declaring ourselves to be platonists. Someone, not me, should evaluate this.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
The objects and truths of mathematics are imperative procedures for their construction [Fine,K]
     Full Idea: I call my new approach to mathematics 'proceduralism'. It agrees with Hilbert and Poincaré that the objects and truths are postulations, but takes them to be imperatival rather than indicative in form; not propositions, but procedures for construction.
     From: Kit Fine (Our Knowledge of Mathematical Objects [2005], Intro)
     A reaction: I'm not sure how an object or a truth can be a procedure, any more than a house can be a procedure. If a procedure doesn't have a product then it is an idle way to pass the time. The view seems to be related to fictionalism.
My Proceduralism has one simple rule, and four complex rules [Fine,K]
     Full Idea: My Proceduralism has one simple rule (introduce an object), and four complex rules: Composition (combining two procedures), Conditionality (if A, do B), Universality (do a procedure for every x), and Iteration (rule to keep doing B).
     From: Kit Fine (Our Knowledge of Mathematical Objects [2005], 1)
     A reaction: It sounds like a highly artificial and private game which Fine has invented, but he claims that this is the sort of thing that practising mathematicians have always done.