Combining Philosophers

Ideas for Herodotus, Keith DeRose and Keith Hossack

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


8 ideas

6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
     Full Idea: The theory of the transfinite needs the ordinal numbers.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
     Full Idea: I take the real numbers to be just lengths.
     From: Keith Hossack (Plurals and Complexes [2000], 9)
     A reaction: I love it. Real numbers are beginning to get on my nerves. They turn up to the party with no invitation and improperly dressed, and then refuse to give their names when challenged.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
     Full Idea: A language with plurals is better for arithmetic. Instead of a first-order fragment expressible by an induction schema, we have the complete truth with a plural induction axiom, beginning 'If there are some numbers...'.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
     Full Idea: In arithmetic singularists need sets as the instantiator of numeric properties.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
Set theory is the science of infinity [Hossack]
     Full Idea: Set theory is the science of infinity.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.