Combining Philosophers

Ideas for Melvin Fitting, Alain Badiou and Bryan Magee

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


7 ideas

6. Mathematics / A. Nature of Mathematics / 1. Mathematics
In mathematics, if a problem can be formulated, it will eventually be solved [Badiou]
     Full Idea: Only in mathematics can one unequivocally maintain that if thought can formulate a problem, it can and will solve it, regardless of how long it takes.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.17)
     A reaction: I hope this includes proving the Continuum Hypothesis, and Goldbach's Conjecture. It doesn't seem quite true, but it shows why philosophers of a rationalist persuasion are drawn to mathematics.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Numbers are for measuring and for calculating (and the two must be consistent) [Badiou]
     Full Idea: Number is an instance of measuring (distinguishing the more from the less, and calibrating data), ..and a figure for calculating (one counts with numbers), ..and it ought to be a figure of consistency (the compatibility of order and calculation).
     From: Alain Badiou (Briefings on Existence [1998], 11)
There is no single unified definition of number [Badiou]
     Full Idea: Apparently - and this is quite unlike old Greek times - there is no single unified definition of number.
     From: Alain Badiou (Briefings on Existence [1998], 11)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each type of number has its own characteristic procedure of introduction [Badiou]
     Full Idea: There is a heterogeneity of introductory procedures of different classical number types: axiomatic for natural numbers, structural for ordinals, algebraic for negative and rational numbers, topological for reals, mainly geometric for complex numbers.
     From: Alain Badiou (Briefings on Existence [1998], 11)
Must we accept numbers as existing when they no longer consist of units? [Badiou]
     Full Idea: Do we have to confer existence on numbers whose principle is to no longer consist of units?
     From: Alain Badiou (Briefings on Existence [1998], 2)
     A reaction: This very nicely expresses what seems to me perhaps the most important question in the philosophy of mathematics. I am reluctant to accept such 'unitless' numbers, but I then feel hopelessly old-fashioned and naïve. What to do?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Mathematics shows that thinking is not confined to the finite [Badiou]
     Full Idea: Mathematics teaches us that there is no reason whatsoever to confne thinking within the ambit of finitude.
     From: Alain Badiou (Mathematics and Philosophy: grand and little [2004], p.19)
     A reaction: This would perhaps make Cantor the greatest thinker who ever lived. It is an exhilarating idea, but we should ward the reader against romping of into unrestrained philosophical thought about infinities. You may be jumping without your Cantorian parachute.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The undecidability of the Continuum Hypothesis may have ruined or fragmented set theory [Badiou]
     Full Idea: As we have known since Paul Cohen's theorem, the Continuum Hypothesis is intrinsically undecidable. Many believe Cohen's discovery has driven the set-theoretic project into ruin, or 'pluralized' what was once presented as a unified construct.
     From: Alain Badiou (Briefings on Existence [1998], 6)
     A reaction: Badiou thinks the theorem completes set theory, by (roughly) finalising its map.