Combining Philosophers

Ideas for W Wimsatt/W Beardsley, John Gray and Hilary Putnam

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


10 ideas

6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Sets larger than the continuum should be studied in an 'if-then' spirit [Putnam]
     Full Idea: Sets of a very high type or very high cardinality (higher than the continuum, for example) should today be investigated in an 'if-then' spirit.
     From: Hilary Putnam (Philosophy of Logic [1971], Ch.7)
     A reaction: This attitude goes back to Hilbert, but it fits with Quine's view of what is indispensable for science. It is hard to see a reason for the cut-off, just looking at the logic of expanding sets.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Very large sets should be studied in an 'if-then' spirit [Putnam]
     Full Idea: Sets of a very high type or very high cardinality (higher than the continuum, for example), should today be investigated in an 'if-then' spirit.
     From: Hilary Putnam (The Philosophy of Logic [1971], p.347), quoted by Penelope Maddy - Naturalism in Mathematics
     A reaction: Quine says the large sets should be regarded as 'uninterpreted'.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
I do not believe mathematics either has or needs 'foundations' [Putnam]
     Full Idea: I do not believe mathematics either has or needs 'foundations'.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Agreed that mathematics can function well without foundations (given that the enterprise got started with no thought for such things), the ontology of the subject still strikes me as a major question, though maybe not for mathematicians.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
It is conceivable that the axioms of arithmetic or propositional logic might be changed [Putnam]
     Full Idea: I believe that under certain circumstances revisions in the axioms of arithmetic, or even of the propositional calculus (e.g. the adoption of a modular logic as a way out of the difficulties in quantum mechanics), is fully conceivable.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: One can change the axioms of a system without necessarily changing the system (by swapping an axiom and a theorem). Especially if platonism is true, since the eternal objects reside calmly above our attempts to axiomatise them!
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
How can you contemplate Platonic entities without causal transactions with them? [Putnam]
     Full Idea: Platonism has the attendant problem of how we can succeed in thinking about and referring to entities we can have no causal transactions with.
     From: Hilary Putnam (Phil of Mathematics: why nothing works [1979], Modalism)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Maybe mathematics is empirical in that we could try to change it [Putnam]
     Full Idea: Mathematics might be 'empirical' in the sense that one is allowed to try to put alternatives into the field.
     From: Hilary Putnam (Mathematics without Foundations [1967], p.303)
     A reaction: He admits that change is highly unlikely. It take hardcore Millian arithmetic to be only changeable if pebbles start behaving very differently with regard to their quantities, which appears to be almost inconceivable.
It is unfashionable, but most mathematical intuitions come from nature [Putnam]
     Full Idea: Experience with nature is undoubtedly the source of our most basic 'mathematical intuitions', even if it is unfashionable to say so.
     From: Hilary Putnam (Models and Reality [1977], p.424)
     A reaction: Correct. I find it quite bewildering how Frege has managed to so discredit all empirical and psychological approaches to mathematics that it has become a heresy to say such things.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Science requires more than consistency of mathematics [Putnam]
     Full Idea: Science demands much more of a mathematical theory than that it should merely be consistent, as the example of the various alternative systems of geometry dramatizes.
     From: Hilary Putnam (Mathematics without Foundations [1967])
     A reaction: Well said. I don't agree with Putnam's Indispensability claims, but if an apparent system of numbers or lines has no application to the world then I don't consider it to be mathematics. It is a new game, like chess.
Indispensability strongly supports predicative sets, and somewhat supports impredicative sets [Putnam]
     Full Idea: We may say that indispensability is a pretty strong argument for the existence of at least predicative sets, and a pretty strong, but not as strong, argument for the existence of impredicative sets.
     From: Hilary Putnam (The Philosophy of Logic [1971], p.346), quoted by Penelope Maddy - Naturalism in Mathematics II.2
We must quantify over numbers for science; but that commits us to their existence [Putnam]
     Full Idea: Quantification over mathematical entities is indispensable for science..., therefore we should accept such quantification; but this commits us to accepting the existence of the mathematical entities in question.
     From: Hilary Putnam (The Philosophy of Logic [1971], p.57), quoted by Stephen Yablo - Apriority and Existence
     A reaction: I'm not surprised that Hartry Field launched his Fictionalist view of mathematics in response to such a counterintuitive claim. I take it we use numbers to slice up reality the way we use latitude to slice up the globe. No commitment to lines!