Combining Philosophers

Ideas for Xenophanes, Bertrand Russell and Peter F. Strawson

unexpand these ideas     |    start again     |     choose another area for these philosophers

display all the ideas for this combination of philosophers


28 ideas

6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Mathematics doesn't care whether its entities exist [Russell]
     Full Idea: Mathematics is throughout indifferent to the question whether its entities exist.
     From: Bertrand Russell (The Principles of Mathematics [1903], §434)
     A reaction: There is an 'if-thenist' attitude in this book, since he is trying to reduce mathematics to logic. Total indifference leaves the problem of why mathematics is applicable to the real world.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Arithmetic was probably inferred from relationships between physical objects [Russell]
     Full Idea: When 2 + 2 =4 was first discovered, it was probably inferred from the case of sheep and other concrete cases.
     From: Bertrand Russell (Regressive Method for Premises in Mathematics [1907], p.272)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
Maths is not known by induction, because further instances are not needed to support it [Russell]
     Full Idea: If induction was the source of our mathematical knowledge, we should proceed differently. In fact, a certain number of instances make us think of two abstractly, and we then see the general principle, and further instances become unnecessary.
     From: Bertrand Russell (Problems of Philosophy [1912], Ch. 7)
     A reaction: In practice, of course, we stop checking whether the sun has come up yet again this morning. Russell's point is better expressed as: if contradictory evidence were observed, we would believe the arithmetic and doubt the experience.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Maybe numbers are adjectives, since 'ten men' grammatically resembles 'white men' [Russell]
     Full Idea: 'Ten men' is grammatically the same form as 'white men', so that 10 might be thought to be an adjective qualifying 'men'.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XVIII)
     A reaction: The immediate problem, as Frege spotted, is that such expressions can be rephrased to remove the adjective (by saying 'the number of men is ten').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
For Russell, numbers are sets of equivalent sets [Russell, by Benacerraf]
     Full Idea: Russell's own stand was that numbers are really only sets of equivalent sets.
     From: report of Bertrand Russell (Introduction to Mathematical Philosophy [1919]) by Paul Benacerraf - Logicism, Some Considerations (PhD) p.168
     A reaction: Benacerraf is launching a nice attack on this view, based on our inability to grasp huge numbers on this basis, or to see their natural order.
Pure mathematics is the class of propositions of the form 'p implies q' [Russell]
     Full Idea: Pure mathematics is the class of all propositions of the form 'p implies q', where p and q are propositions containing one or more variables, the same in the two propositions, and neither p nor q contains any constants except logical constants.
     From: Bertrand Russell (The Principles of Mathematics [1903], §001)
     A reaction: Linnebo calls Russell's view here 'deductive structuralism'. Russell gives (§5) as an example that Euclid is just whatever is deduced from his axioms.
Maths can be deduced from logical axioms and the logic of relations [Russell]
     Full Idea: I think that no one will dispute that from certain ideas and axioms of formal logic, but with the help of the logic of relations, all pure mathematics can be deduced.
     From: Bertrand Russell (Logical Atomism [1924], p.145)
     A reaction: It has been said for a long time that Gödel's Incompleteness Theorems of 1930 disproved this claim, though recently there have been defenders of logicism. Beginning with 'certain ideas' sounds like begging the question.
We tried to define all of pure maths using logical premisses and concepts [Russell]
     Full Idea: The primary aim of our 'Principia Mathematica' was to show that all pure mathematics follows from purely logical premisses and uses only concepts definable in logical terms.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.7)
     A reaction: This spells out the main programme of logicism, by its great hero, Russell. The big question now is whether Gödel's Incompleteness Theorems have succeeded in disproving logicism.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
For 'x is a u' to be meaningful, u must be one range of individuals (or 'type') higher than x [Russell]
     Full Idea: In his 1903 theory of types he distinguished between individuals, ranges of individuals, ranges of ranges of individuals, and so on. Each level was a type, and it was stipulated that for 'x is a u' to be meaningful, u must be one type higher than x.
     From: Bertrand Russell (The Principles of Mathematics [1903], App)
     A reaction: Russell was dissatisfied because this theory could not deal with Cantor's Paradox. Is this the first time in modern philosophy that someone has offered a criterion for whether a proposition is 'meaningful'?
In 'x is a u', x and u must be of different types, so 'x is an x' is generally meaningless [Russell, by Magidor]
     Full Idea: Russell argues that in a statement of the form 'x is a u' (and correspondingly, 'x is a not-u'), 'x must be of different types', and hence that ''x is an x' must in general be meaningless'.
     From: report of Bertrand Russell (The Principles of Mathematics [1903], App B:524) by Ofra Magidor - Category Mistakes 1.2
     A reaction: " 'Word' is a word " comes to mind, but this would be the sort of ascent to a metalanguage (to distinguish the types) which Tarski exploited. It is the simple point that a classification can't be the same as a member of the classification.
Type theory seems an extreme reaction, since self-exemplification is often innocuous [Swoyer on Russell]
     Full Idea: Russell's reaction to his paradox (by creating his theory of types) seems extreme, because many cases of self-exemplification are innocuous. The property of being a property is itself a property.
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Chris Swoyer - Properties 7.5
     A reaction: Perhaps it is not enough that 'many cases' are innocuous. We are starting from philosophy of mathematics, where precision is essentially. General views about properties come later.
Russell's improvements blocked mathematics as well as paradoxes, and needed further axioms [Russell, by Musgrave]
     Full Idea: Unfortunately, Russell's new logic, as well as preventing the deduction of paradoxes, also prevented the deduction of mathematics, so he supplemented it with additional axioms, of Infinity, of Choice, and of Reducibility.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Alan Musgrave - Logicism Revisited §2
     A reaction: The first axiom seems to be an empirical hypothesis, and the second has turned out to be independent of logic and set theory.
Type theory means that features shared by different levels cannot be expressed [Morris,M on Russell]
     Full Idea: Russell's theory of types avoided the paradoxes, but it had the result that features common to different levels of the hierarchy become uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (Mathematical logic and theory of types [1908]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
Type theory cannot identify features across levels (because such predicates break the rules) [Morris,M on Russell]
     Full Idea: Russell's theory of types meant that features common to different levels of the hierarchy became uncapturable (since any attempt to capture them would involve a predicate which disobeyed the hierarchy restrictions).
     From: comment on Bertrand Russell (The Theory of Logical Types [1910]) by Michael Morris - Guidebook to Wittgenstein's Tractatus 2H
     A reaction: I'm not clear whether this is the main reason why type theory was abandoned. Ramsey was an important critic.
Classes are defined by propositional functions, and functions are typed, with an axiom of reducibility [Russell, by Lackey]
     Full Idea: In Russell's mature 1910 theory of types classes are defined in terms of propositional functions, and functions themselves are regimented by a ramified theory of types mitigated by the axiom of reducibility.
     From: report of Bertrand Russell (The Theory of Logical Types [1910]) by Douglas Lackey - Intros to Russell's 'Essays in Analysis' p.133
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Ramified types can be defended as a system of intensional logic, with a 'no class' view of sets [Russell, by Linsky,B]
     Full Idea: A defence of the ramified theory of types comes in seeing it as a system of intensional logic which includes the 'no class' account of sets, and indeed the whole development of mathematics, as just a part.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by Bernard Linsky - Russell's Metaphysical Logic 6.1
     A reaction: So Linsky's basic project is to save logicism, by resting on intensional logic (rather than extensional logic and set theory). I'm not aware that Linsky has acquired followers for this. Maybe Crispin Wright has commented?
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Numbers are just verbal conveniences, which can be analysed away [Russell]
     Full Idea: Numbers are nothing but a verbal convenience, and disappear when the propositions that seem to contain them are fully written out.
     From: Bertrand Russell (Is Mathematics purely Linguistic? [1952], p.301)
     A reaction: This is the culmination of the process which began with his 1905 theory of definite descriptions. The intervening step was Wittgenstein's purely formal account of the logical connectives.
Formalists say maths is merely conventional marks on paper, like the arbitrary rules of chess [Russell]
     Full Idea: The Formalists, led by Hilbert, maintain that arithmetic symbols are merely marks on paper, devoid of meaning, and that arithmetic consists of certain arbitrary rules, like the rules of chess, by which these marks can be manipulated.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.10)
     A reaction: I just don't believe that maths is arbitrary, and this view pushes me into the arms of the empiricists, who say maths is far more likely to arise from experience than from arbitrary convention. The key to maths is patterns.
Formalism can't apply numbers to reality, so it is an evasion [Russell]
     Full Idea: Formalism is perfectly adequate for doing sums, but not for the application of number, such as the simple statement 'there are three men in this room', so it must be regarded as an unsatisfactory evasion.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.10)
     A reaction: This seems to me a powerful and simple objection. The foundation of arithmetic is that there are three men in the room, not that one plus two is three. Three men and three ties make a pattern, which we call 'three'.
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Numbers are classes of classes, and hence fictions of fictions [Russell]
     Full Idea: Numbers are classes of classes, and classes are logical fictions, so that numbers are, as it were, fictions at two removes, fictions of fictions.
     From: Bertrand Russell (The Philosophy of Logical Atomism [1918], §VIII)
     A reaction: This summarises the findings of Russell and Whitehead's researches into logicism. Gödel may have proved that project impossible, but there is now debate about that. Personally I think of numbers as names of patterns.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism says propositions are only true or false if there is a method of showing it [Russell]
     Full Idea: The nerve of the Intuitionist theory, led by Brouwer, is the denial of the law of excluded middle; it holds that a proposition can only be accounted true or false when there is some method of ascertaining which of these it is.
     From: Bertrand Russell (My Philosophical Development [1959], Ch.2)
     A reaction: He cites 'there are three successive sevens in the expansion of pi' as a case in point. This seems to me an example of the verificationism and anti-realism which is typical of that period. It strikes me as nonsense, but Russell takes it seriously.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
We need rules for deciding which norms are predicative (unless none of them are) [Russell]
     Full Idea: We need rules for deciding what norms are predicative and what are not, unless we adopt the view (which has much to recommend it) that no norms are predicative. ...[146] A predative propositional function is one which determines a class.
     From: Bertrand Russell (Difficulties of Transfinite Numbers and Types [1905], p.141)
     A reaction: He is referring to his 'no class' theory, which he favoured at that time.
A set does not exist unless at least one of its specifications is predicative [Russell, by Bostock]
     Full Idea: The idea is that the same set may well have different canonical specifications, i.e. there may be different ways of stating its membership conditions, and so long as one of these is predicative all is well. If none are, the supposed set does not exist.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
Russell is a conceptualist here, saying some abstracta only exist because definitions create them [Russell, by Bostock]
     Full Idea: It is a conceptualist approach that Russell is relying on. ...The view is that some abstract objects ...exist only because they are definable. It is the definition that would (if permitted) somehow bring them into existence.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908]) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: I'm suddenly thinking that predicativism is rather interesting. Being of an anti-platonist persuasion about abstract 'objects', I take some story about how we generate them to be needed. Psychological abstraction seems right, but a bit vague.
Vicious Circle says if it is expressed using the whole collection, it can't be in the collection [Russell, by Bostock]
     Full Idea: The Vicious Circle Principle says, roughly, that whatever involves, or presupposes, or is only definable in terms of, all of a collection cannot itself be one of the collection.
     From: report of Bertrand Russell (Mathematical logic and theory of types [1908], p.63,75) by David Bostock - Philosophy of Mathematics 8.1
     A reaction: This is Bostock's paraphrase of Russell, because Russell never quite puts it clearly. The response is the requirement to be 'predicative'. Bostock emphasises that it mainly concerns definitions. The Principle 'always leads to hierarchies'.
A one-variable function is only 'predicative' if it is one order above its arguments [Russell]
     Full Idea: We will define a function of one variable as 'predicative' when it is of the next order above that of its arguments, i.e. of the lowest order compatible with its having an argument.
     From: Bertrand Russell (The Theory of Logical Types [1910], p.237)
     A reaction: 'Predicative' just means it produces a set. This is Russell's strict restriction on which functions are predicative.
'Predicative' norms are those which define a class [Russell]
     Full Idea: Norms (containing one variable) which do not define classes I propose to call 'non-predicative'; those which do define classes I shall call 'predicative'.
     From: Bertrand Russell (Difficulties of Transfinite Numbers and Types [1905], p.141)
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / e. Psychologism
There is always something psychological about inference [Russell]
     Full Idea: There is always unavoidably something psychological about inference.
     From: Bertrand Russell (Introduction to Mathematical Philosophy [1919], XIV)
     A reaction: Glad to find Russell saying that. Only pure Fregeans dream of a logic that rises totally above the minds that think it. See Robert Hanna on the subject.