Combining Philosophers

All the ideas for Aeschylus, Keith Hossack and Penelope Maddy

unexpand these ideas     |    start again     |     specify just one area for these philosophers


87 ideas

4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
     Full Idea: Most writers agree that if any sense can be made of the distinction between analytic and synthetic, then the Axiom of Extensionality should be counted as analytic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [Boolos is the source of the idea] In other words Extensionality is not worth discussing, because it simply tells you what the world 'set' means, and there is no room for discussion about that. The set/class called 'humans' varies in size.
Extensional sets are clearer, simpler, unique and expressive [Maddy]
     Full Idea: The extensional view of sets is preferable because it is simpler, clearer, and more convenient, because it individuates uniquely, and because it can simulate intensional notions when the need arises.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [She cites Fraenkel, Bar-Hillet and Levy for this] The difficulty seems to be whether the extensional notion captures our ordinary intuitive notion of what constitutes a group of things, since that needs flexible size and some sort of unity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
     Full Idea: The Power Set Axiom is indispensable for a set-theoretic account of the continuum, ...and in so far as those attempts are successful, then the power-set principle gains some confirmatory support.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.6)
     A reaction: The continuum is, of course, notoriously problematic. Have we created an extra problem in our attempts at solving the first one?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
     Full Idea: In the presence of other axioms, the Axiom of Foundation is equivalent to the claim that every set is a member of some Vα.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
     Full Idea: The Iterative Conception (Zermelo 1930) says everything appears at some stage. Given two objects a and b, let A and B be the stages at which they first appear. Suppose B is after A. Then the pair set of a and b appears at the immediate stage after B.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: Presumably this all happens in 'logical time' (a nice phrase I have just invented!). I suppose we might say that the existence of the paired set is 'forced' by the preceding sets. No transcendental inferences in this story?
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
     Full Idea: The 'limitation of size' is a vague intuition, based on the idea that being too large may generate the paradoxes.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: This is an intriguing idea to be found right at the centre of what is supposed to be an incredibly rigorous system.
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
     Full Idea: The master science can be thought of as the theory of sets with the entire range of physical objects as ur-elements.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: This sounds like Quine's view, since we have to add sets to our naturalistic ontology of objects. It seems to involve unrestricted mereology to create normal objects.
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
     Full Idea: Maddy dispenses with pure sets, by sketching a strong set theory in which everything is either a physical object or a set of sets of ...physical objects. Eventually a physiological story of perception will extend to sets of physical objects.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: This doesn't seem to find many supporters, but if we accept the perception of resemblances as innate (as in Hume and Quine), it is isn't adding much to see that we intrinsically see things in groups.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
     Full Idea: We might reduce sets to ordinal numbers, thereby reversing the standard set-theoretical reduction of ordinals to sets.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
     A reaction: He has demonstrated that there are as many ordinals as there are sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
     Full Idea: Extensional mereology defs: 'distinct' things have no parts in common; a 'fusion' has some things all of which are parts, with no further parts. Axioms: (transitivity) a part of a part is part of the whole; (sums) any things have a unique fusion.
     From: Keith Hossack (Plurals and Complexes [2000], 5)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
     Full Idea: Henkin-style semantics seem to me more plausible for plural logic than for second-order logic.
     From: Penelope Maddy (Second Philosophy [2007], III.8 n1)
     A reaction: Henkin-style semantics are presented by Shapiro as the standard semantics for second-order logic.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
     Full Idea: A 'propositional function' is generated when one of the terms of the proposition is replaced by a variable, as in 'x is wise' or 'Socrates'.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: This implies that you can only have a propositional function if it is derived from a complete proposition. Note that the variable can be in either subject or in predicate position. It extends Frege's account of a concept as 'x is F'.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
     Full Idea: The sentence connective 'and' also has an order-sensitive meaning, when it means something like 'and then'.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.4)
     A reaction: This is support the idea that orders are a feature of reality, just as much as possible concatenation. Relational predicates, he says, refer to series rather than to individuals. Nice point.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
     Full Idea: The reason the two predicates 'before' and 'after' are needed is not to express different relations, but to indicate its order. Since there can be difference of order without difference of relation, the nature of relations is not the source of order.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.3)
     A reaction: This point is to refute Russell's 1903 claim that order arises from the nature of relations. Hossack claims that it is ordered series which are basic. I'm inclined to agree with him.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
     Full Idea: If we extend the power of language with plural definite descriptions, these would pick out the largest class of things that fit the description.
     From: Keith Hossack (Plurals and Complexes [2000], 3)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural reference will refer to complex facts without postulating complex things [Hossack]
     Full Idea: It may be that plural reference gives atomism the resources to state complex facts without needing to refer to complex things.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: This seems the most interesting metaphysical implication of the possibility of plural quantification.
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
     Full Idea: If all properties are distributive, plural reference is just a handy abbreviation to avoid repetition (as in 'A and B are hungry', to avoid 'A is hungry and B is hungry'), but not all properties are distributive (as in 'some people surround a table').
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: The characteristic examples to support plural quantification involve collective activity and relations, which might be weeded out of our basic ontology, thus leaving singular quantification as sufficient.
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
     Full Idea: Singular comprehension principles have a bad reputation, but the plural comprehension principle says that given a condition on individuals, there are some things such that something is one of them iff it meets the condition.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
     Full Idea: In a plural language we can discuss without fear of inconsistency the things that are not members of themselves.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
     A reaction: [see Hossack for details]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
     Full Idea: The theory of the transfinite needs the ordinal numbers.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
     Full Idea: I take the real numbers to be just lengths.
     From: Keith Hossack (Plurals and Complexes [2000], 9)
     A reaction: I love it. Real numbers are beginning to get on my nerves. They turn up to the party with no invitation and improperly dressed, and then refuse to give their names when challenged.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
     Full Idea: The line of development that finally led to a coherent foundation for the calculus also led to the explicit introduction of completed infinities: each real number is identified with an infinite collection of rationals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
     A reaction: Effectively, completed infinities just are the real numbers.
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
     Full Idea: Both Cantor's real number (Cauchy sequences of rationals) and Dedekind's cuts involved regarding infinite items (sequences or sets) as completed and subject to further manipulation, bringing the completed infinite into mathematics unambiguously.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1 n39)
     A reaction: So it is the arrival of the real numbers which is the culprit for lumbering us with weird completed infinites, which can then be the subject of addition, multiplication and exponentiation. Maybe this was a silly mistake?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
     Full Idea: By the mid 1890s Cantor was aware that there could be no set of all sets, as its cardinal number would have to be the largest cardinal number, while his own theorem shows that for any cardinal there is a larger.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: There is always a larger cardinal because of the power set axiom. Some people regard that with suspicion.
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
     Full Idea: The stunning discovery that infinity comes in different degrees led to the theory of infinite cardinal numbers, the heart of contemporary set theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: It occurs to me that these huge cardinals only exist in set theory. If you took away that prop, they would vanish in a puff.
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
     Full Idea: An 'inaccessible' cardinal is one that cannot be reached by taking unions of small collections of smaller sets or by taking power sets.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
     A reaction: They were introduced by Hausdorff in 1908.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
     Full Idea: Even the fundamental theorems about limits could not [at first] be proved because the reals themselves were not well understood.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This refers to the period of about 1850 (Weierstrass) to 1880 (Dedekind and Cantor).
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
     Full Idea: A language with plurals is better for arithmetic. Instead of a first-order fragment expressible by an induction schema, we have the complete truth with a plural induction axiom, beginning 'If there are some numbers...'.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
     Full Idea: I attach no decisive importance even to bringing in the extension of the concepts at all.
     From: Penelope Maddy (Naturalism in Mathematics [1997], §107)
     A reaction: He almost seems to equate the concept with its extension, but that seems to raise all sorts of questions, about indeterminate and fluctuating extensions.
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
     Full Idea: In the ZFC cumulative hierarchy, Frege's candidates for numbers do not exist. For example, new three-element sets are formed at every stage, so there is no stage at which the set of all three-element sets could he formed.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Ah. This is a very important fact indeed if you are trying to understand contemporary discussions in philosophy of mathematics.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
     Full Idea: To solve the Julius Caesar problem, Frege requires explicit definitions of the numbers, and he proposes his well-known solution: the number of Fs = the extension of the concept 'equinumerous with F' (based on one-one correspondence).
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Why do there have to be Fs before there can be the corresponding number? If there were no F for 523, would that mean that '523' didn't exist (even if 522 and 524 did exist)?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
     Full Idea: If you wonder why multiplication is commutative, you could prove it from the Peano postulates, but the proof offers little towards an answer. In set theory Cartesian products match 1-1, and n.m dots when turned on its side has m.n dots, which explains it.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: 'Turning on its side' sounds more fundamental than formal set theory. I'm a fan of explanation as taking you to the heart of the problem. I suspect the world, rather than set theory, explains the commutativity.
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
     Full Idea: The standard account of the relationship between numbers and sets is that numbers simply are certain sets. This has the advantage of ontological economy, and allows numbers to be brought within the epistemology of sets.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Maddy votes for numbers being properties of sets, rather than the sets themselves. See Yourgrau's critique.
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
     Full Idea: I propose that ...numbers are properties of sets, analogous, for example, to lengths, which are properties of physical objects.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Are lengths properties of physical objects? A hole in the ground can have a length. A gap can have a length. Pure space seems to contain lengths. A set seems much more abstract than its members.
A natural number is a property of sets [Maddy, by Oliver]
     Full Idea: Maddy takes a natural number to be a certain property of sui generis sets, the property of having a certain number of members.
     From: report of Penelope Maddy (Realism in Mathematics [1990], 3 §2) by Alex Oliver - The Metaphysics of Properties
     A reaction: [I believe Maddy has shifted since then] Presumably this will make room for zero and infinities as natural numbers. Personally I want my natural numbers to count things.
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
     Full Idea: The set theory axioms developed in producing foundations for mathematics also have strong consequences for existing fields, and produce a theory that is immensely fruitful in its own right.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: [compressed] Second of Maddy's three benefits of set theory. This benefit is more questionable than the first, because the axioms may be invented because of their nice fruit, instead of their accurate account of foundations.
Unified set theory gives a final court of appeal for mathematics [Maddy]
     Full Idea: The single unified area of set theory provides a court of final appeal for questions of mathematical existence and proof.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Maddy's third benefit of set theory. 'Existence' means being modellable in sets, and 'proof' means being derivable from the axioms. The slightly ad hoc character of the axioms makes this a weaker defence.
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
     Full Idea: Set theoretic foundations bring all mathematical objects and structures into one arena, allowing relations and interactions between them to be clearly displayed and investigated.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: The first of three benefits of set theory which Maddy lists. The advantages of the one arena seem to be indisputable.
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
     Full Idea: Our much loved mathematical knowledge rests on two supports: inexorable deductive logic (the stuff of proof), and the set theoretic axioms.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I Intro)
Set theory is the science of infinity [Hossack]
     Full Idea: Set theory is the science of infinity.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
     Full Idea: In arithmetic singularists need sets as the instantiator of numeric properties.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
     Full Idea: The identification of geometric points with real numbers was among the first and most dramatic examples of the power of set theoretic foundations.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Hence the clear definition of the reals by Dedekind and Cantor was the real trigger for launching set theory.
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
     Full Idea: The structure of a geometric line by rational points left gaps, which were inconsistent with a continuous line. Set theory provided an ordering that contained no gaps. These reals are constructed from rationals, which come from integers and naturals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This completes the reduction of geometry to arithmetic and algebra, which was launch 250 years earlier by Descartes.
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
     Full Idea: I am not suggesting a reduction of number theory to set theory ...There are only sets with number properties; number theory is part of the theory of finite sets.
     From: Penelope Maddy (Sets and Numbers [1981], V)
Sets exist where their elements are, but numbers are more like universals [Maddy]
     Full Idea: A set of things is located where the aggregate of those things is located, ...but a number is simultaneously located at many different places (10 in my hand, and a baseball team) ...so numbers seem more like universals than particulars.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: My gut feeling is that Maddy's master idea (of naturalising sets by building them from ur-elements of natural objects) won't work. Sets can work fine in total abstraction from nature.
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
     Full Idea: The popular challenges to platonism in philosophy of mathematics are epistemological (how are we able to interact with these objects in appropriate ways) and ontological (if numbers are sets, which sets are they).
     From: Penelope Maddy (Sets and Numbers [1981], I)
     A reaction: These objections refer to Benacerraf's two famous papers - 1965 for the ontology, and 1973 for the epistemology. Though he relied too much on causal accounts of knowledge in 1973, I'm with him all the way.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
     Full Idea: Maddy says that intuition alone does not support very much mathematics; more importantly, a naturalist cannot accept intuition at face value, but must ask why we are justified in relying on intuition.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: It depends what you mean by 'intuition', but I identify with her second objection, that every faculty must ultimately be subject to criticism, which seems to point to a fairly rationalist view of things.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
     Full Idea: Maddy proposes that we can know (some) mind-independent mathematical truths through knowing about sets, and that we can obtain knowledge of sets through experience.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Carrie Jenkins - Grounding Concepts 6.5
     A reaction: Maddy has since backed off from this, and now tries to merely defend 'objectivity' about sets (2011:114). My amateurish view is that she is overrating the importance of sets, which merely model mathematics. Look at category theory.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
     Full Idea: Crudely, the scientist posits only those entities without which she cannot account for observations, while the set theorist posits as many entities as she can, short of inconsistency.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.5)
Maybe applications of continuum mathematics are all idealisations [Maddy]
     Full Idea: It could turn out that all applications of continuum mathematics in natural sciences are actually instances of idealisation.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
     Full Idea: Number words are not like normal adjectives. For example, number words don't occur in 'is (are)...' contexts except artificially, and they must appear before all other adjectives, and so on.
     From: Penelope Maddy (Sets and Numbers [1981], IV)
     A reaction: [She is citing Benacerraf's arguments]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
     Full Idea: By Quine's test of ontological commitment, if some children are sitting in a circle, no individual child can sit in a circle, so a singular paraphrase will have us committed to a 'group' of children.
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: Nice of why Quine is committed to the existence of sets. Hossack offers plural quantification as a way of avoiding commitment to sets. But is 'sitting in a circle' a real property (in the Shoemaker sense)? I can sit in a circle without realising it.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
     Full Idea: The case of atoms makes it clear that the indispensable appearance of an entity in our best scientific theory is not generally enough to convince scientists that it is real.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: She refers to the period between Dalton and Einstein, when theories were full of atoms, but there was strong reluctance to actually say that they existed, until the direct evidence was incontrovertable. Nice point.
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
     Full Idea: Complex particulars are of at least three types: masses (which sum, of which we do not ask 'how many?' but 'how much?'); composite individuals (how many?, and summing usually fails); and sets (only divisible one way, unlike composites).
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: A composite pile of grains of sand gradually becomes a mass, and drops of water become 'water everywhere'. A set of people divides into individual humans, but redescribe the elements as the union of males and females?
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
     Full Idea: The relation of composition seems to be indispensable in a correct account of the part-whole relation for individuals.
     From: Keith Hossack (Plurals and Complexes [2000], 7)
     A reaction: This is the culmination of a critical discussion of mereology and ontological atomism. At first blush it doesn't look as if 'composition' has much chance of being a precise notion, and it will be plagued with vagueness.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
     Full Idea: We can employ Leibniz's Law against mereological atomism. Water is wet, but no water molecule is wet. The set of infinite numbers is infinite, but no finite number is infinite. ..But with plural reference the atomist can resist this argument.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: The idea of plural reference is to state plural facts without referring to complex things, which is interesting. The general idea is that we have atomism, and then all the relations, unities, identities etc. are in the facts, not in the things. I like it.
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
     Full Idea: The fusion of five rectangles may have a decomposition into more than five parts that are rectangles.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
     Full Idea: In science we treat the earth's surface as flat, we assume the ocean to be infinitely deep, we use continuous functions for what we know to be quantised, and we take liquids to be continuous despite atomic theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: If fussy people like scientists do this all the time, how much more so must the confused multitude be doing the same thing all day?
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
     Full Idea: A thought can refer to a particular or a universal or a state of affairs, but it can predicate only a universal and it can affirm only a state of affairs.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: Hossack is summarising Armstrong's view, which he is accepting. To me, 'thought' must allow for animals, unlike language. I think Hossack's picture is much too clear-cut. Do animals grasp universals? Doubtful. Can they predicate? Yes.
25. Social Practice / D. Justice / 2. The Law / b. Rule of law
The 'Eumenides' of Aeschylus shows blood feuds replaced by law [Aeschylus, by Grayling]
     Full Idea: The 'Eumenides' of Aeschylus tells how the old rule of revenge and blood feud was replaced by a due process of law before a civil jury.
     From: report of Aeschylus (The Eumenides [c.458 BCE]) by A.C. Grayling - What is Good? Ch.2
     A reaction: Compare Idea 1659, where this revolution is attributed to Protagoras (a little later than Aeschylus). I take the rule of law and of society to be above all the rule of reason, because the aim is calm objectivity instead of emotion.
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]
     Full Idea: We might dispense with substantival space, and say that if the distribution of matter in space could have been different, that just means the matter of the Universe could have been shaped differently (with geometry as the science of shapes).
     From: Keith Hossack (Plurals and Complexes [2000], 9)