Combining Philosophers

All the ideas for Alfred Tarski, Gary Gutting and Penelope Maddy

unexpand these ideas     |    start again     |     specify just one area for these philosophers


138 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / d. Nineteenth century philosophy
Since Kant, self-criticism has been part of philosophy [Gutting]
     Full Idea: Philosophy after Kant has involved a continuing critique of its own project.
     From: Gary Gutting (Foucault: a very short introduction [2005], 6)
     A reaction: I'm struck by many modern philosophers in the analytic tradition who write as if Kant had never existed. I don't know if that is a conscious decision, but it may be a good one.
1. Philosophy / E. Nature of Metaphysics / 5. Metaphysics beyond Science
Some say metaphysics is a highly generalised empirical study of objects [Tarski]
     Full Idea: For some people metaphysics is a general theory of objects (ontology) - a discipline which is to be developed in a purely empirical way, and which differs from other empirical disciplines in its generality.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 19)
     A reaction: Tarski says some people despise it, but for him such metaphysics is 'not objectionable'. I subscribe to this view, but the empirical aspect is very remote, because it's too general for detail observation or experiment. Generality is the key to philosophy.
1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Disputes that fail to use precise scientific terminology are all meaningless [Tarski]
     Full Idea: Disputes like the vague one about 'the right conception of truth' occur in all domains where, instead of exact, scientific terminology, common language with its vagueness and ambiguity is used; and they are always meaningless, and therefore in vain.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 14)
     A reaction: Taski taught a large number of famous philosophers in California in the 1950s, and this approach has had a huge influence. Recently there has been a bit of a rebellion. E.g. Kit Fine doesn't think it can all be done in formal languages.
1. Philosophy / H. Continental Philosophy / 4. Linguistic Structuralism
Structuralism describes human phenomena in terms of unconscious structures [Gutting]
     Full Idea: Structuralism in the 1960s was a set of theories which explained human phenomena in terms of underlying unconscious structures, rather than the lived experience described by Phenomenology.
     From: Gary Gutting (Foucault: a very short introduction [2005], 6)
     A reaction: Hence the interest in Freud and Marx, and Foucault's interest in history, each offering to unmask what is hidden in consciousness. The unmasking is a basically Kantian project. Cf. Frege's hatred of 'psychologism'.
2. Reason / D. Definition / 1. Definitions
For a definition we need the words or concepts used, the rules, and the structure of the language [Tarski]
     Full Idea: We must specify the words or concepts which we wish to use in defining the notion of truth; and we must also give the formal rules to which the definition should conform. More generally, we must describe the formal structure of the language.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 01)
     A reaction: This, of course, is a highly formal view of how definition should be achieved, offered in anticipation of one of the most famous definitions in logic (of truth, by Tarski). Normally we assume English and classical logic.
3. Truth / A. Truth Problems / 2. Defining Truth
Tarski proved that truth cannot be defined from within a given theory [Tarski, by Halbach]
     Full Idea: Tarski's Theorem states that under fairly generally applicable conditions, the assumption that there is a definition of truth within a given theory for the language of that same theory leads to a contradiction.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 1
     A reaction: That might leave room for a definition outside the given theory. I take the main motivation for the axiomatic approach to be a desire to get a theory of truth within the given theory, where Tarski's Theorem says traditional approaches are just wrong.
Tarski proved that any reasonably expressive language suffers from the liar paradox [Tarski, by Horsten]
     Full Idea: Tarski's Theorem on the undefinability of truth says in a language sufficiently rich to talk about itself (which Gödel proved possible, via coding) the liar paradox can be carried out.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 02.2
     A reaction: The point is that truth is formally indefinable if it leads inescapably to contradiction, which the liar paradox does. This theorem is the motivation for all modern attempts to give a rigorous account of truth.
'True sentence' has no use consistent with logic and ordinary language, so definition seems hopeless [Tarski]
     Full Idea: The possibility of a consistent use of 'true sentence' which is in harmony with the laws of logic and the spirit of everyday language seems to be very questionable, so the same doubt attaches to the possibility of constructing a correct definition.
     From: Alfred Tarski (The Concept of Truth for Formalized Languages [1933], §1)
     A reaction: This is often cited as Tarski having conclusively proved that 'true' cannot be defined from within a language, but his language here is much more circumspect. Modern critics say the claim depends entirely on classical logic.
In everyday language, truth seems indefinable, inconsistent, and illogical [Tarski]
     Full Idea: In everyday language it seems impossible to define the notion of truth or even to use this notion in a consistent manner and in agreement with the laws of logic.
     From: Alfred Tarski (works [1936]), quoted by Feferman / Feferman - Alfred Tarski: life and logic Int III
     A reaction: [1935] See Logic|Theory of Logic|Semantics of Logic for Tarski's approach to truth.
Definitions of truth should not introduce a new version of the concept, but capture the old one [Tarski]
     Full Idea: The desired definition of truth does not aim to specify the meaning of a familiar word used to denote a novel notion; on the contrary, it aims to catch hold of the actual meaning of an old notion.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 01)
     A reaction: Tarski refers back to Aristotle for an account of the 'old notion'. To many the definition of Tarski looks very weird, so it is important to see that he is trying to capture the original concept.
A definition of truth should be materially adequate and formally correct [Tarski]
     Full Idea: The main problem of the notion of truth is to give a satisfactory definition which is materially adequate and formally correct.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 01)
     A reaction: That is, I take it, that it covers all cases of being true and failing to be true, and it fits in with the logic. The logic is explicitly classical logic, and he is not aiming to give the 'nature' or natural language understanding of the concept.
A rigorous definition of truth is only possible in an exactly specified language [Tarski]
     Full Idea: The problem of the definition of truth obtains a precise meaning and can be solved in a rigorous way only for those languages whose structure has been exactly specified.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 06)
     A reaction: Taski has just stated how to exactly specify the structure of a language. He says definition can only be vague and approximate for natural languages. (The usual criticism of the correspondence theory is its vagueness).
We may eventually need to split the word 'true' into several less ambiguous terms [Tarski]
     Full Idea: A time may come when we find ourselves confronted with several incompatible, but equally clear and precise, conceptions of truth. It will then become necessary to abandon the ambiguous usage of the word 'true', and introduce several terms instead.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 14)
     A reaction: There may be a whiff of the pragmatic attitude to truth here, though that view is not necessarily pluralist. Analytic philosophy needs much more splitting of difficult terms into several more focused terms.
3. Truth / C. Correspondence Truth / 3. Correspondence Truth critique
Tarski's Theorem renders any precise version of correspondence impossible [Tarski, by Halbach]
     Full Idea: Tarski's Theorem applies to any sufficient precise version of the correspondence theory of truth, and all the other traditional theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 1
     A reaction: This is the key reason why modern thinkers have largely dropped talk of the correspondence theory. See Idea 16295.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Tarskian semantics says that a sentence is true iff it is satisfied by every sequence [Tarski, by Hossack]
     Full Idea: Tarskian semantics says that a sentence is true iff it is satisfied by every sequence, where a sequence is a set-theoretic individual, a set of ordered pairs each with a natural number as its first element and an object from the domain for its second.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Keith Hossack - Plurals and Complexes 3
'"It is snowing" is true if and only if it is snowing' is a partial definition of the concept of truth [Tarski]
     Full Idea: Statements of the form '"it is snowing" is true if and only if it is snowing' and '"the world war will begin in 1963" is true if and only if the world war will being in 1963' can be regarded as partial definitions of the concept of truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.404)
     A reaction: The key word here is 'partial'. Truth is defined, presumably, when every such translation from the object language has been articulated, which is presumably impossible, given the infinity of concatenated phrases possible in a sentence.
Tarski gave up on the essence of truth, and asked how truth is used, or how it functions [Tarski, by Horsten]
     Full Idea: Tarski emancipated truth theory from traditional philosophy, by no longer posing Pilate's question (what is truth? or what is the essence of truth?) but instead 'how is truth used?', 'how does truth function?' and 'how can its functioning be described?'.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 02.2
     A reaction: Horsten, later in the book, does not give up on the essence of truth, and modern theorists are trying to get back to that question by following Tarski's formal route. Modern analytic philosophy at its best, it seems to me.
Tarski did not just aim at a definition; he also offered an adequacy criterion for any truth definition [Tarski, by Halbach]
     Full Idea: Tarski did not settle for a definition of truth, taking its adequacy for granted. Rather he proposed an adequacy criterion for evaluating the adequacy of definitions of truth. The criterion is his famous Convention T.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
     A reaction: Convention T famously says the sentence is true if and only if a description of the sentence is equivalent to affirming the sentence. 'Snow is white' iff snow is white.
Tarski enumerates cases of truth, so it can't be applied to new words or languages [Davidson on Tarski]
     Full Idea: Tarski does not tell us how to apply his concept of truth to a new case, whether the new case is a new language or a word newly added to a language. This is because enumerating cases gives no clue for the next or general case.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: His account has been compared to a telephone directory. We aim to understand the essence of anything, so that we can fully know it, and explain and predict how it will behave. Either truth is primitive, or I demand to know its essence.
Tarski define truths by giving the extension of the predicate, rather than the meaning [Davidson on Tarski]
     Full Idea: Tarski defined the class of true sentences by giving the extension of the truth predicate, but he did not give the meaning.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: This is analogous to giving an account of the predicate 'red' as the set of red objects. Since I regard that as a hopeless definition of 'red', I am inclined to think the same of Tarski's account of truth. It works in the logic, but so what?
Tarski made truth relative, by only defining truth within some given artificial language [Tarski, by O'Grady]
     Full Idea: Tarski's account doesn't hold for natural languages. The general notion of truth is replaced by "true-in-L", where L is a formal language. Hence truth is relativized to each artificial language.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Paul O'Grady - Relativism Ch.2
     A reaction: This is a pretty good indication that Tarski's theory is NOT a correspondence theory, even if its structure may sometimes give that impression.
Tarski has to avoid stating how truths relate to states of affairs [Kirkham on Tarski]
     Full Idea: Tarski has to define truths so as not to make explicit the relation between a true sentence and an obtaining state of affairs. ...He has to list each sentence separately, and simply assign it a state of affairs.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.8
     A reaction: He has to avoid semantic concepts like 'reference', because he wants a physicalist theory, according to Kirkham. Thus the hot interest in theories of reference in the 1970s/80s. And also attempts to give a physicalist account of meaning.
It is convenient to attach 'true' to sentences, and hence the language must be specified [Tarski]
     Full Idea: For several reasons it appears most convenient to apply the term 'true' to sentences, and we shall follow this course. Consequently, we must always relate the notion of truth, like that of a sentence, to a specific language.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 02)
     A reaction: Personally I take truth to attach to propositions, since sentences are ambiguous. In Idea 17308 the one sentence expresses three different truths (in my opinion), even though a single sentence (given in the object language) specifies it.
In the classical concept of truth, 'snow is white' is true if snow is white [Tarski]
     Full Idea: If we base ourselves on the classical conception of truth, we shall say that the sentence 'snow is white' is true if snow is white, and it is false if snow is not white.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 04)
     A reaction: I had not realised, prior to his, how closely Tarski is sticking to Aristotle's famous formulation of truth. The point is that you can only specify 'what is' using a language. Putting 'true' in the metalanguage gives specific content to Aristotle.
Scheme (T) is not a definition of truth [Tarski]
     Full Idea: It is a mistake to regard scheme (T) as a definition of truth.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 15)
     A reaction: The point is, I take it, that the definition is the multitude of sentences which are generated by the schema, not the schema itself.
Each interpreted T-sentence is a partial definition of truth; the whole definition is their conjunction [Tarski]
     Full Idea: In 'X is true iff p' if we replace X by the name of a sentence and p by a particular sentence this can be considered a partial definition of truth. The whole definition has to be ...a logical conjunction of all these partial definitions.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 04)
     A reaction: This seems an unprecedented and odd way to define something. Define 'red' by '"This tomato is red" iff this tomato is red', etc? Define 'stone' by collecting together all the stones? The complex T-sentences are infinite in number.
Use 'true' so that all T-sentences can be asserted, and the definition will then be 'adequate' [Tarski]
     Full Idea: We wish to use the term 'true' in such a way that all the equivalences of the form (T) [i.e. X is true iff p] can be asserted, and we shall call a definition of truth 'adequate' if all these equivalences follow from it.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 04)
     A reaction: The interpretation of Tarski's theory is difficult. From this I'm thinking that 'true' is simply being defined as 'assertible'. This is the status of each line in a logical proof, if there is a semantic dimension to the proof (and not mere syntax).
We don't give conditions for asserting 'snow is white'; just that assertion implies 'snow is white' is true [Tarski]
     Full Idea: Semantic truth implies nothing regarding the conditions under which 'snow is white' can be asserted. It implies only that, whenever we assert or reject this sentence, we must be ready to assert or reject the correlated sentence '"snow is white" is true'.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 18)
     A reaction: This appears to identify truth with assertibility, which is pretty much what modern pragmatists say. How do you distinguish 'genuine' assertion from rhetorical, teasing or lying assertions? Genuine assertion implies truth? Hm.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
Truth only applies to closed formulas, but we need satisfaction of open formulas to define it [Burgess on Tarski]
     Full Idea: In Tarski's theory of truth, although the notion of truth is applicable only to closed formulas, to define it we must define a more general notion of satisfaction applicable to open formulas.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by John P. Burgess - Philosophical Logic 1.8
     A reaction: This is a helpful pointer to what is going on in the Tarski definition. It culminates in the 'satisfaction of all sequences', which presumable delivers the required closed formula.
Tarski uses sentential functions; truly assigning the objects to variables is what satisfies them [Tarski, by Rumfitt]
     Full Idea: Tarski invoked the notion of a sentential function, where components are replaced by appropriate variables. A function is then satisfied by assigning objects to variables. An assignment satisfies if the function is true of the things assigned.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Ian Rumfitt - The Boundary Stones of Thought 3.2
     A reaction: [very compressed] This use of sentential functions, rather than sentences, looks like the key to Tarski's definition of truth.
We can define the truth predicate using 'true of' (satisfaction) for variables and some objects [Tarski, by Horsten]
     Full Idea: The truth predicate, says Tarski, should be defined in terms of the more primitive satisfaction relation: the relation of being 'true of'. The fundamental notion is a formula (containing the free variables) being true of a sequence of objects as values.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 06.3
For physicalism, reduce truth to satisfaction, then define satisfaction as physical-plus-logic [Tarski, by Kirkham]
     Full Idea: Tarski, a physicalist, reduced semantics to physical and/or logicomathematical concepts. He defined all semantic concepts, save satisfaction, in terms of truth. Then truth is defined in terms of satisfaction, and satisfaction is given non-semantically.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.1
     A reaction: The term 'logicomathematical' is intended to cover set theory. Kirkham says you can remove these restrictions from Tarski's theory, and the result is a version of the correspondence theory.
Insight: don't use truth, use a property which can be compositional in complex quantified sentence [Tarski, by Kirkham]
     Full Idea: Tarski's great insight is find another property, since open sentences are not truth. It must be had by open and genuine sentences. Clauses having it must generate it for the whole sentence. Truth can be defined for sentences by using it.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.4
     A reaction: The proposed property is 'satisfaction', which can (unlike truth) be a feature open sentences (such as 'x is green', which is satisfied by x='grass'),
Tarski gave axioms for satisfaction, then derived its explicit definition, which led to defining truth [Tarski, by Davidson]
     Full Idea: Tarski turned his axiomatic characterisation of satisfaction into an explicit definition of the satisfaction-predicate using some fancy set theoretical apparatus, and this in turn leads to the explicit definition of the truth predicate.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 7
The best truth definition involves other semantic notions, like satisfaction (relating terms and objects) [Tarski]
     Full Idea: It turns out that the simplest and most natural way of obtaining an exact definition of truth is one which involves the use of other semantic notions, e.g. the notion of satisfaction (...which expresses relations between expressions and objects).
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 05)
     A reaction: While the T-sentences appear to be 'minimal' and 'deflationary', it seems important to remember that 'satisfaction', which is basic to his theory, is a very robust notion. He actually mentions 'objects'. But see Idea 19185.
Specify satisfaction for simple sentences, then compounds; true sentences are satisfied by all objects [Tarski]
     Full Idea: To define satisfaction we indicate which objects satisfy the simplest sentential functions, then state the conditions for compound functions. This applies automatically to sentences (with no free variables) so a true sentence is satisfied by all objects.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 11)
     A reaction: I presume nothing in the domain of objects can conflict with a sentence that has been satisfied by some of them, so 'all' the objects satisfy the sentence. Tarski doesn't use the word 'domain'. Basic satisfaction seems to be stipulated.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / c. Meta-language for truth
We can't use a semantically closed language, or ditch our logic, so a meta-language is needed [Tarski]
     Full Idea: In a 'semantically closed' language all sentences which determine the adequate usage of 'true' can be asserted in the language. ...We can't change our logic, so we reject such languages. ...So must use two different languages to discuss truth.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 08-09)
     A reaction: This section explains why a meta-language is required. It rests entirely on the existence of the Liar paradox is a semantically closed language.
The metalanguage must contain the object language, logic, and defined semantics [Tarski]
     Full Idea: Every sentence which occurs in the object language must also occur in the metalanguage, or can be translated into the metalanguage. There must also be logical terms, ...and semantic terms can only be introduced in the metalanguage by definition.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 09)
     A reaction: He suggest that if the languages are 'typed', the meta-languag, to be 'richer', must contain variables of a higher logica type. Does this mean second-order logic?
3. Truth / F. Semantic Truth / 2. Semantic Truth
Tarski defined truth for particular languages, but didn't define it across languages [Davidson on Tarski]
     Full Idea: Tarski defined various predicates of the form 's is true in L', each applicable to a single language, but he failed to define a predicate of the form 's is true in L' for variable 'L'.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Donald Davidson - Truth and Predication 1
     A reaction: You might say that no one defines 'tree' to be just 'in English', but we might define 'multiplies' to be in Peano Arithmetic. This indicates the limited and formal nature of what Tarski was trying to achieve.
Tarski didn't capture the notion of an adequate truth definition, as Convention T won't prove non-contradiction [Halbach on Tarski]
     Full Idea: Every really adequate theory of truth should also prove the law of non-contradiction. Therefore Tarski's notion of adequacy in Convention T fails to capture the intuitive notion of adequacy he is after.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
     A reaction: Tarski points out this weakness, in a passage quoted by Halbach. This obviously raises the question of what truth theories should prove, and this is explored by Halbach. If they start to prove arithmetic, we get nervous. Non-contradiction and x-middle?
Tarski says that his semantic theory of truth is completely neutral about all metaphysics [Tarski, by Haack]
     Full Idea: Tarski says "we may remain naďve realists or idealists, empiricists or metaphysicians… The semantic conception is completely neutral toward all these issues."
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Susan Haack - Philosophy of Logics 7.5
Physicalists should explain reference nonsemantically, rather than getting rid of it [Tarski, by Field,H]
     Full Idea: Tarski work was to persuade physicalist that eliminating semantics was on the wrong track, and that we should explicate notions in the theory of reference nonsemantically rather than simply get rid of them.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Hartry Field - Tarski's Theory of Truth §3
A physicalist account must add primitive reference to Tarski's theory [Field,H on Tarski]
     Full Idea: We need to add theories of primitive reference to Tarski's account if we are to establish the notion of truth as a physicalistically acceptable notion.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Hartry Field - Tarski's Theory of Truth §4
     A reaction: This is the main point of Field's paper, and sounds very plausible to me. There is something major missing from Tarski, and at some point there needs to be a 'primitive' notion of thought and language making contact with the world, as it can't be proved.
If listing equivalences is a reduction of truth, witchcraft is just a list of witch-victim pairs [Field,H on Tarski]
     Full Idea: By similar standards of reduction to Tarski's, one might prove witchcraft compatible with physicalism, as long as witches cast only a finite number of spells. We merely list witch-and-victim pairs, with no mention of the terms of witchcraft theory.
     From: comment on Alfred Tarski (The Semantic Conception of Truth [1944], 04) by Hartry Field - Tarski's Theory of Truth §4
Tarski made truth respectable, by proving that it could be defined [Tarski, by Halbach]
     Full Idea: Tarski's proof of the definability of truth allowed him to establish truth as a respectable notion by his standards.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
Tarski had a theory of truth, and a theory of theories of truth [Tarski, by Read]
     Full Idea: Besides a theory of truth of his own, Tarski developed a theory of theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Stephen Read - Thinking About Logic Ch.1
     A reaction: The famous snow biconditional is the latter, and the recursive account based on satisfaction is the former.
Tarski's 'truth' is a precise relation between the language and its semantics [Tarski, by Walicki]
     Full Idea: Tarski's analysis of the concept of 'truth' ...is given a precise treatment as a particular relation between syntax (language) and semantics (the world).
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Michal Walicki - Introduction to Mathematical Logic History E.1
     A reaction: My problem is that the concept of truth seems to apply to animal minds, which are capable of making right or wrong judgements, and of realising their errors. Tarski didn't make universal claims for his account.
Tarskian truth neglects the atomic sentences [Mulligan/Simons/Smith on Tarski]
     Full Idea: The Tarskian account of truth neglects the atomic sentences.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Mulligan/Simons/Smith - Truth-makers §1
     A reaction: Yes! The whole Tarskian edifice is built on a foundation which it is taboo even to mention. If truth is just the assignment of 'T' and 'F', that isn't even the beginnings of a theory of 'truth'.
3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
Tarski's had the first axiomatic theory of truth that was minimally adequate [Tarski, by Horsten]
     Full Idea: Tarski's work is the earliest axiomatic theory of truth that meets minimal adequacy conditions.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Leon Horsten - The Tarskian Turn 01.1
     A reaction: This shows a way in which Tarski gave a new direction to the study of truth. Subsequent theories have been 'stronger'.
Tarski defined truth, but an axiomatisation can be extracted from his inductive clauses [Tarski, by Halbach]
     Full Idea: Tarski preferred a definition of truth, but from that an axiomatisation can be extracted. His induction clauses can be turned into axioms. Hence he opened the way to axiomatic theories of truth.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 3
Tarski thought axiomatic truth was too contingent, and in danger of inconsistencies [Tarski, by Davidson]
     Full Idea: Tarski preferred an explicit definition of truth to axioms. He says axioms have a rather accidental character, only a definition can guarantee the continued consistency of the system, and it keeps truth in harmony with physical science and physicalism.
     From: report of Alfred Tarski (works [1936]) by Donald Davidson - Truth and Predication 2 n2
     A reaction: Davidson's summary, gleaned from various sources in Tarski. A big challenge for modern axiom systems is to avoid inconsistency, which is extremely hard to do (given that set theory is not sure of having achieved it).
We need an undefined term 'true' in the meta-language, specified by axioms [Tarski]
     Full Idea: We have to include the term 'true', or some other semantic term, in the list of undefined terms of the meta-language, and to express fundamental properties of the notion of truth in a series of axioms.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 10)
     A reaction: It sounds as if Tarski semantic theory gives truth for the object language, but then an axiomatic theory of truth is also needed for the metalanguage. Halbch and Horsten seem to want an axiomatic theory in the object language.
3. Truth / H. Deflationary Truth / 1. Redundant Truth
Truth can't be eliminated from universal claims, or from particular unspecified claims [Tarski]
     Full Idea: Truth can't be eliminated from universal statements saying all sentences of a certain type are true, or from the proof that 'all consequences of true sentences are true'. It is also needed if we can't name the sentence ('Plato's first sentence is true').
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 16)
     A reaction: This points to the deflationary view of truth, if its only role is in talking about other sentences in this way. Tarski gives the standard reason for rejecting the Redundancy view.
3. Truth / H. Deflationary Truth / 2. Deflationary Truth
Semantics is a very modest discipline which solves no real problems [Tarski]
     Full Idea: Semantics as it is conceived in this paper is a sober and modest discipline which has no pretensions to being a universal patent-medicine for all the ills and diseases of mankind, whether imaginary or real.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 05)
     A reaction: Written in 1944. This remark encourages the minimal or deflationary interpretation of his theory of truth, but see the robust use of 'satisfaction' in Idea 19184.
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Truth tables give prior conditions for logic, but are outside the system, and not definitions [Tarski]
     Full Idea: Logical sentences are often assigned preliminary conditions under which they are true or false (often given as truth tables). However, these are outside the system of logic, and should not be regarded as definitions of the terms involved.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 15)
     A reaction: Hence, presumably, the connectives are primitives (with no nature or meaning), and the truth tables are axioms for their use? This opinion of Tarski's may have helped shift the preference towards natural deduction introduction and elimination rules.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
'Forcing' can produce new models of ZFC from old models [Maddy]
     Full Idea: Cohen's method of 'forcing' produces a new model of ZFC from an old model by appending a carefully chosen 'generic' set.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
A Large Cardinal Axiom would assert ever-increasing stages in the hierarchy [Maddy]
     Full Idea: A possible axiom is the Large Cardinal Axiom, which asserts that there are more and more stages in the cumulative hierarchy. Infinity can be seen as the first of these stages, and Replacement pushes further in this direction.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
New axioms are being sought, to determine the size of the continuum [Maddy]
     Full Idea: In current set theory, the search is on for new axioms to determine the size of the continuum.
     From: Penelope Maddy (Believing the Axioms I [1988], §0)
     A reaction: This sounds the wrong way round. Presumably we seek axioms that fix everything else about set theory, and then check to see what continuum results. Otherwise we could just pick our continuum, by picking our axioms.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
The Axiom of Extensionality seems to be analytic [Maddy]
     Full Idea: Most writers agree that if any sense can be made of the distinction between analytic and synthetic, then the Axiom of Extensionality should be counted as analytic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [Boolos is the source of the idea] In other words Extensionality is not worth discussing, because it simply tells you what the world 'set' means, and there is no room for discussion about that. The set/class called 'humans' varies in size.
Extensional sets are clearer, simpler, unique and expressive [Maddy]
     Full Idea: The extensional view of sets is preferable because it is simpler, clearer, and more convenient, because it individuates uniquely, and because it can simulate intensional notions when the need arises.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.1)
     A reaction: [She cites Fraenkel, Bar-Hillet and Levy for this] The difficulty seems to be whether the extensional notion captures our ordinary intuitive notion of what constitutes a group of things, since that needs flexible size and some sort of unity.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The Axiom of Infinity states Cantor's breakthrough that launched modern mathematics [Maddy]
     Full Idea: The Axiom of Infinity is a simple statement of Cantor's great breakthrough. His bold hypothesis that a collection of elements that had lurked in the background of mathematics could be infinite launched modern mathematics.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: It also embodies one of those many points where mathematics seems to depart from common sense - but then most subjects depart from common sense when they get more sophisticated. Look what happened to art.
Infinite sets are essential for giving an account of the real numbers [Maddy]
     Full Idea: If one is interested in analysis then infinite sets are indispensable since even the notion of a real number cannot be developed by means of finite sets alone.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.5)
     A reaction: [Maddy is citing Fraenkel, Bar-Hillel and Levy] So Cantor's great breakthrough (Idea 13021) actually follows from the earlier acceptance of the real numbers, so that's where the departure from common sense started.
Axiom of Infinity: completed infinite collections can be treated mathematically [Maddy]
     Full Idea: The axiom of infinity: that there are infinite sets is to claim that completed infinite collections can be treated mathematically. In its standard contemporary form, the axioms assert the existence of the set of all finite ordinals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set Axiom is needed for, and supported by, accounts of the continuum [Maddy]
     Full Idea: The Power Set Axiom is indispensable for a set-theoretic account of the continuum, ...and in so far as those attempts are successful, then the power-set principle gains some confirmatory support.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.6)
     A reaction: The continuum is, of course, notoriously problematic. Have we created an extra problem in our attempts at solving the first one?
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
The Axiom of Foundation says every set exists at a level in the set hierarchy [Maddy]
     Full Idea: In the presence of other axioms, the Axiom of Foundation is equivalent to the claim that every set is a member of some Vα.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Efforts to prove the Axiom of Choice have failed [Maddy]
     Full Idea: Jordain made consistent and ill-starred efforts to prove the Axiom of Choice.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This would appear to be the fate of most axioms. You would presumably have to use a different system from the one you are engaged with to achieve your proof.
Modern views say the Choice set exists, even if it can't be constructed [Maddy]
     Full Idea: Resistance to the Axiom of Choice centred on opposition between existence and construction. Modern set theory thrives on a realistic approach which says the choice set exists, regardless of whether it can be defined, constructed, or given by a rule.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: This seems to be a key case for the ontology that lies at the heart of theory. Choice seems to be an invaluable tool for proofs, so it won't go away, so admit it to the ontology. Hm. So the tools of thought have existence?
A large array of theorems depend on the Axiom of Choice [Maddy]
     Full Idea: Many theorems depend on the Axiom of Choice, including that a countable union of sets is countable, and results in analysis, topology, abstract algebra and mathematical logic.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.7)
     A reaction: The modern attitude seems to be to admit anything if it leads to interesting results. It makes you wonder about the modern approach of using mathematics and logic as the cutting edges of ontological thinking.
The Axiom of Choice paradoxically allows decomposing a sphere into two identical spheres [Maddy]
     Full Idea: One feature of the Axiom of Choice that troubled many mathematicians was the so-called Banach-Tarski paradox: using the Axiom, a sphere can be decomposed into finitely many parts and those parts reassembled into two spheres the same size as the original.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
     A reaction: (The key is that the parts are non-measurable). To an outsider it is puzzling that the Axiom has been universally accepted, even though it produces such a result. Someone can explain that, I'm sure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
Axiom of Reducibility: propositional functions are extensionally predicative [Maddy]
     Full Idea: The Axiom of Reducibility states that every propositional function is extensionally equivalent to some predicative proposition function.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The Iterative Conception says everything appears at a stage, derived from the preceding appearances [Maddy]
     Full Idea: The Iterative Conception (Zermelo 1930) says everything appears at some stage. Given two objects a and b, let A and B be the stages at which they first appear. Suppose B is after A. Then the pair set of a and b appears at the immediate stage after B.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: Presumably this all happens in 'logical time' (a nice phrase I have just invented!). I suppose we might say that the existence of the paired set is 'forced' by the preceding sets. No transcendental inferences in this story?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is a vague intuition that over-large sets may generate paradoxes [Maddy]
     Full Idea: The 'limitation of size' is a vague intuition, based on the idea that being too large may generate the paradoxes.
     From: Penelope Maddy (Believing the Axioms I [1988], §1.3)
     A reaction: This is an intriguing idea to be found right at the centre of what is supposed to be an incredibly rigorous system.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
The master science is physical objects divided into sets [Maddy]
     Full Idea: The master science can be thought of as the theory of sets with the entire range of physical objects as ur-elements.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: This sounds like Quine's view, since we have to add sets to our naturalistic ontology of objects. It seems to involve unrestricted mereology to create normal objects.
Maddy replaces pure sets with just objects and perceived sets of objects [Maddy, by Shapiro]
     Full Idea: Maddy dispenses with pure sets, by sketching a strong set theory in which everything is either a physical object or a set of sets of ...physical objects. Eventually a physiological story of perception will extend to sets of physical objects.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: This doesn't seem to find many supporters, but if we accept the perception of resemblances as innate (as in Hume and Quine), it is isn't adding much to see that we intrinsically see things in groups.
5. Theory of Logic / A. Overview of Logic / 3. Value of Logic
Set theory and logic are fairy tales, but still worth studying [Tarski]
     Full Idea: People have asked me, 'How can you, a nominalist, do work in set theory and in logic, which are theories about things you do not believe in?' ...I believe that there is a value even in fairy tales and the study of fairy tales.
     From: Alfred Tarski (talk [1965]), quoted by Feferman / Feferman - Alfred Tarski: life and logic
     A reaction: This is obviously an oversimplification. I don't think for a moment that Tarski literally believed that the study of fairy tales had as much value as the study of logic. Why do we have this particular logic, and not some other?
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
There is no clear boundary between the logical and the non-logical [Tarski]
     Full Idea: No objective grounds are known to me which permit us to draw a sharp boundary between the two groups of terms, the logical and the non-logical.
     From: Alfred Tarski (works [1936]), quoted by Alan Musgrave - Logicism Revisited §3
     A reaction: Musgrave is pointing out that this is bad news if you want to 'reduce' something like arithmetic to logic. 'Logic' is a vague object.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
A language: primitive terms, then definition rules, then sentences, then axioms, and finally inference rules [Tarski]
     Full Idea: For a language, we must enumerate the primitive terms, and the rules of definition for new terms. Then we must distinguish the sentences, and separate out the axioms from amng them, and finally add rules of inference.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: [compressed] This lays down the standard modern procedure for defining a logical language. Once all of this is in place, we then add a semantics and we are in business. Natural deduction tries to do without the axioms.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Henkin semantics is more plausible for plural logic than for second-order logic [Maddy]
     Full Idea: Henkin-style semantics seem to me more plausible for plural logic than for second-order logic.
     From: Penelope Maddy (Second Philosophy [2007], III.8 n1)
     A reaction: Henkin-style semantics are presented by Shapiro as the standard semantics for second-order logic.
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Split out the logical vocabulary, make an assignment to the rest. It's logical if premises and conclusion match [Tarski, by Rumfitt]
     Full Idea: Tarski made a division of logical and non-logical vocabulary. He then defined a model as a non-logical assignment satisfying the corresponding sentential function. Then a conclusion follows logically if every model of the premises models the conclusion.
     From: report of Alfred Tarski (The Concept of Logical Consequence [1936]) by Ian Rumfitt - The Boundary Stones of Thought 3.2
     A reaction: [compressed] This is Tarski's account of logical consequence, which follows on from his account of truth. 'Logical validity' is then 'true in every model'. Rumfitt doubts whether Tarski has given the meaning of 'logical consequence'.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is when in any model in which the premises are true, the conclusion is true [Tarski, by Beall/Restall]
     Full Idea: Tarski's 1936 definition of logical consequence is that in any model in which the premises are true, the conclusion is true too (so that no model can make the conclusion false).
     From: report of Alfred Tarski (works [1936]) by JC Beall / G Restall - Logical Consequence 3
     A reaction: So the general idea is that a logical consequence is distinguished by being unstoppable. Sounds good. But then we have monotonic and non-monotonic logics, which (I'm guessing) embody different notions of consequence.
Logical consequence: true premises give true conclusions under all interpretations [Tarski, by Hodges,W]
     Full Idea: Tarski's definition of logical consequence (1936) is that in a fully interpreted formal language an argument is valid iff under any allowed interpretation of its nonlogical symbols, if the premises are true then so is the conclusion.
     From: report of Alfred Tarski (works [1936]) by Wilfrid Hodges - Model Theory 3
     A reaction: The idea that you can only make these claims 'under an interpretation' seems to have had a huge influence on later philosophical thinking.
X follows from sentences K iff every model of K also models X [Tarski]
     Full Idea: The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence X.
     From: Alfred Tarski (The Concept of Logical Consequence [1936], p.417)
     A reaction: [see Idea 13343 for his account of a 'model'] He is offering to define logical consequence in general, but this definition fits what we now call 'semantic consequence', written |=. This it is standard practice to read |= as 'models'.
5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
Critics of if-thenism say that not all starting points, even consistent ones, are worth studying [Maddy]
     Full Idea: If-thenism denies that mathematics is in the business of discovering truths about abstracta. ...[their opponents] obviously don't regard any starting point, even a consistent one, as equally worthy of investigation.
     From: Penelope Maddy (Defending the Axioms [2011], 3.3)
     A reaction: I have some sympathy with if-thenism, in that you can obviously study the implications of any 'if' you like, but deep down I agree with the critics.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
The truth definition proves semantic contradiction and excluded middle laws (not the logic laws) [Tarski]
     Full Idea: With our definition of truth we can prove the laws of contradiction and excluded middle. These semantic laws should not be identified with the related logical laws, which belong to the sentential calculus, and do not involve 'true' at all.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 12)
     A reaction: Very illuminating. I wish modern thinkers could be so clear about this matter. The logic contains 'P or not-P'. The semantics contains 'P is either true or false'. Critics say Tarski has presupposed 'classical' logic.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is invariant under arbitrary permutations, so it seems to be a logical term [Tarski, by McGee]
     Full Idea: Tarski showed that the only binary relations invariant under arbitrary permutations are the universal relation, the empty relation, identity and non-identity, thus giving us a reason to include '=' among the logical terms.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Vann McGee - Logical Consequence 6
     A reaction: Tarski was looking for a criterion to distinguish logical from non-logical terms, since his account of logical validity depended on it. This idea lies behind whether a logic is or is not specified to be 'with identity' (i.e. using '=').
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
'Propositional functions' are propositions with a variable as subject or predicate [Maddy]
     Full Idea: A 'propositional function' is generated when one of the terms of the proposition is replaced by a variable, as in 'x is wise' or 'Socrates'.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: This implies that you can only have a propositional function if it is derived from a complete proposition. Note that the variable can be in either subject or in predicate position. It extends Frege's account of a concept as 'x is F'.
5. Theory of Logic / F. Referring in Logic / 1. Naming / c. Names as referential
A name denotes an object if the object satisfies a particular sentential function [Tarski]
     Full Idea: To say that the name x denotes a given object a is the same as to stipulate that the object a ... satisfies a sentential function of a particular type.
     From: Alfred Tarski (The Concept of Truth for Formalized Languages [1933], p.194)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Tarski built a compositional semantics for predicate logic, from dependent satisfactions [Tarski, by McGee]
     Full Idea: Tarski discovered how to give a compositional semantics for predicate calculus, defining truth in terms of satisfaction, and showing how satisfaction for a complicated formula depends on satisfaction of the simple subformulas.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Vann McGee - Logical Consequence 4
     A reaction: The problem was that the subformulas may contain free variables, and thus not be sentences with truth values. 'Satisfaction' can handle this, where 'truth' cannot (I think).
Tarksi invented the first semantics for predicate logic, using this conception of truth [Tarski, by Kirkham]
     Full Idea: Tarski invented a formal semantics for quantified predicate logic, the logic of reasoning about mathematics. The heart of this great accomplishment is his theory of truth. It has been called semantic 'theory' of truth, but Tarski preferred 'conception'.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Richard L. Kirkham - Theories of Truth: a Critical Introduction 5.1
Semantics is the concepts of connections of language to reality, such as denotation, definition and truth [Tarski]
     Full Idea: Semantics is the totality of considerations concerning concepts which express connections between expressions of a language and objects and states of affairs referred to by these expressions. Examples are denotation, satisfaction, definition and truth.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.401)
     A reaction: Interestingly, he notes that it 'is not commonly recognised' that truth is part of semantics. Nowadays truth seems to be the central concept in most semantics.
A language containing its own semantics is inconsistent - but we can use a second language [Tarski]
     Full Idea: People have not been aware that the language about which we speak need by no means coincide with the language in which we speak. ..But the language which contains its own semantics must inevitably be inconsistent.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.402)
     A reaction: It seems that Tarski was driven to propose the metalanguage approach mainly by the Liar Paradox.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A sentence is satisfied when we can assert the sentence when the variables are assigned [Tarski]
     Full Idea: Here is a partial definition of the concept of satisfaction: John and Peter satisfy the sentential function 'X and Y are brothers' if and only if John and Peter are brothers.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.405)
     A reaction: Satisfaction applies to open sentences and truth to closed sentences (with named objects). He uses the notion of total satisfaction to define truth. The example is a partial definition, not just an illustration.
Satisfaction is the easiest semantical concept to define, and the others will reduce to it [Tarski]
     Full Idea: It has been found useful in defining semantical concepts to deal first with the concept of satisfaction; both because the definition of this concept presents relatively few difficulties, and because the other semantical concepts are easily reduced to it.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.406)
     A reaction: See Idea 13339 for his explanation of satisfaction. We just say that a open sentence is 'acceptable' or 'assertible' (or even 'true') when particular values are assigned to the variables. Then sentence is then 'satisfied'.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
The object language/ metalanguage distinction is the basis of model theory [Tarski, by Halbach]
     Full Idea: Tarski's distinction between object and metalanguage forms the basis of model theory.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Volker Halbach - Axiomatic Theories of Truth 11
A 'model' is a sequence of objects which satisfies a complete set of sentential functions [Tarski]
     Full Idea: An arbitrary sequence of objects which satisfies every sentential function of the sentences L' will be called a 'model' or realization of the class L of sentences. There can also be a model of a single sentence is this way.
     From: Alfred Tarski (The Concept of Logical Consequence [1936], p.417)
     A reaction: [L' is L with the constants replaced by variables] Tarski is the originator of model theory, which is central to modern logic. The word 'realization' is a helpful indicator of what he has in mind. A model begins to look like a possible world.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Hilbert's geometry and Dedekind's real numbers were role models for axiomatization [Maddy]
     Full Idea: At the end of the nineteenth century there was a renewed emphasis on rigor, the central tool of which was axiomatization, along the lines of Hilbert's axioms for geometry and Dedekind's axioms for real numbers.
     From: Penelope Maddy (Defending the Axioms [2011], 1.3)
If two mathematical themes coincide, that suggest a single deep truth [Maddy]
     Full Idea: The fact that two apparently fruitful mathematical themes turn out to coincide makes it all the more likely that they're tracking a genuine strain of mathematical depth.
     From: Penelope Maddy (Defending the Axioms [2011], 5.3ii)
5. Theory of Logic / K. Features of Logics / 2. Consistency
Using the definition of truth, we can prove theories consistent within sound logics [Tarski]
     Full Idea: Using the definition of truth we are in a position to carry out the proof of consistency for deductive theories in which only (materially) true sentences are (formally) provable.
     From: Alfred Tarski (The Establishment of Scientific Semantics [1936], p.407)
     A reaction: This is evidently what Tarski saw as the most important first fruit of his new semantic theory of truth.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Tarski avoids the Liar Paradox, because truth cannot be asserted within the object language [Tarski, by Fisher]
     Full Idea: In Tarski's account of truth, self-reference (as found in the Liar Paradox) is prevented because the truth predicate for any given object language is never a part of that object language, and so a sentence can never predicate truth of itself.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Jennifer Fisher - On the Philosophy of Logic 03.I
     A reaction: Thus we solve the Liar Paradox by ruling that 'you are not allowed to say that'. Hm. The slightly odd result is that in any conversation about whether p is true, we end up using (logically speaking) two different languages simultaneously. Hm.
The Liar makes us assert a false sentence, so it must be taken seriously [Tarski]
     Full Idea: In my judgement, it would be quite wrong and dangerous from the point of view of scientific progress to depreciate the importance of nhtinomies like the Liar Paradox, and treat them as jokes. The fact is we have been compelled to assert a false sentence.
     From: Alfred Tarski (The Semantic Conception of Truth [1944], 07)
     A reaction: This is the heartfelt cry of the perfectionist, who wants everything under control. It was the dream of the age of Frege to Hilbert, which gradually eroded after Gödel's Incompleteness proof. Short ordinary folk panic about the Liar?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Completed infinities resulted from giving foundations to calculus [Maddy]
     Full Idea: The line of development that finally led to a coherent foundation for the calculus also led to the explicit introduction of completed infinities: each real number is identified with an infinite collection of rationals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.3)
     A reaction: Effectively, completed infinities just are the real numbers.
Cantor and Dedekind brought completed infinities into mathematics [Maddy]
     Full Idea: Both Cantor's real number (Cauchy sequences of rationals) and Dedekind's cuts involved regarding infinite items (sequences or sets) as completed and subject to further manipulation, bringing the completed infinite into mathematics unambiguously.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1 n39)
     A reaction: So it is the arrival of the real numbers which is the culprit for lumbering us with weird completed infinites, which can then be the subject of addition, multiplication and exponentiation. Maybe this was a silly mistake?
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
Every infinite set of reals is either countable or of the same size as the full set of reals [Maddy]
     Full Idea: One form of the Continuum Hypothesis is the claim that every infinite set of reals is either countable or of the same size as the full set of reals.
     From: Penelope Maddy (Defending the Axioms [2011], 2.4 n40)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Infinity has degrees, and large cardinals are the heart of set theory [Maddy]
     Full Idea: The stunning discovery that infinity comes in different degrees led to the theory of infinite cardinal numbers, the heart of contemporary set theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: It occurs to me that these huge cardinals only exist in set theory. If you took away that prop, they would vanish in a puff.
For any cardinal there is always a larger one (so there is no set of all sets) [Maddy]
     Full Idea: By the mid 1890s Cantor was aware that there could be no set of all sets, as its cardinal number would have to be the largest cardinal number, while his own theorem shows that for any cardinal there is a larger.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: There is always a larger cardinal because of the power set axiom. Some people regard that with suspicion.
An 'inaccessible' cardinal cannot be reached by union sets or power sets [Maddy]
     Full Idea: An 'inaccessible' cardinal is one that cannot be reached by taking unions of small collections of smaller sets or by taking power sets.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.5)
     A reaction: They were introduced by Hausdorff in 1908.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
Theorems about limits could only be proved once the real numbers were understood [Maddy]
     Full Idea: Even the fundamental theorems about limits could not [at first] be proved because the reals themselves were not well understood.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This refers to the period of about 1850 (Weierstrass) to 1880 (Dedekind and Cantor).
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Tarski improved Hilbert's geometry axioms, and without set-theory [Tarski, by Feferman/Feferman]
     Full Idea: Tarski found an elegant new axiom system for Euclidean geometry that improved Hilbert's earlier version - and he formulated it without the use of set-theoretical notions.
     From: report of Alfred Tarski (works [1936]) by Feferman / Feferman - Alfred Tarski: life and logic Ch.9
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
The extension of concepts is not important to me [Maddy]
     Full Idea: I attach no decisive importance even to bringing in the extension of the concepts at all.
     From: Penelope Maddy (Naturalism in Mathematics [1997], §107)
     A reaction: He almost seems to equate the concept with its extension, but that seems to raise all sorts of questions, about indeterminate and fluctuating extensions.
In the ZFC hierarchy it is impossible to form Frege's set of all three-element sets [Maddy]
     Full Idea: In the ZFC cumulative hierarchy, Frege's candidates for numbers do not exist. For example, new three-element sets are formed at every stage, so there is no stage at which the set of all three-element sets could he formed.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Ah. This is a very important fact indeed if you are trying to understand contemporary discussions in philosophy of mathematics.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege solves the Caesar problem by explicitly defining each number [Maddy]
     Full Idea: To solve the Julius Caesar problem, Frege requires explicit definitions of the numbers, and he proposes his well-known solution: the number of Fs = the extension of the concept 'equinumerous with F' (based on one-one correspondence).
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Why do there have to be Fs before there can be the corresponding number? If there were no F for 523, would that mean that '523' didn't exist (even if 522 and 524 did exist)?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory (unlike the Peano postulates) can explain why multiplication is commutative [Maddy]
     Full Idea: If you wonder why multiplication is commutative, you could prove it from the Peano postulates, but the proof offers little towards an answer. In set theory Cartesian products match 1-1, and n.m dots when turned on its side has m.n dots, which explains it.
     From: Penelope Maddy (Sets and Numbers [1981], II)
     A reaction: 'Turning on its side' sounds more fundamental than formal set theory. I'm a fan of explanation as taking you to the heart of the problem. I suspect the world, rather than set theory, explains the commutativity.
Standardly, numbers are said to be sets, which is neat ontology and epistemology [Maddy]
     Full Idea: The standard account of the relationship between numbers and sets is that numbers simply are certain sets. This has the advantage of ontological economy, and allows numbers to be brought within the epistemology of sets.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Maddy votes for numbers being properties of sets, rather than the sets themselves. See Yourgrau's critique.
Numbers are properties of sets, just as lengths are properties of physical objects [Maddy]
     Full Idea: I propose that ...numbers are properties of sets, analogous, for example, to lengths, which are properties of physical objects.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: Are lengths properties of physical objects? A hole in the ground can have a length. A gap can have a length. Pure space seems to contain lengths. A set seems much more abstract than its members.
A natural number is a property of sets [Maddy, by Oliver]
     Full Idea: Maddy takes a natural number to be a certain property of sui generis sets, the property of having a certain number of members.
     From: report of Penelope Maddy (Realism in Mathematics [1990], 3 §2) by Alex Oliver - The Metaphysics of Properties
     A reaction: [I believe Maddy has shifted since then] Presumably this will make room for zero and infinities as natural numbers. Personally I want my natural numbers to count things.
Making set theory foundational to mathematics leads to very fruitful axioms [Maddy]
     Full Idea: The set theory axioms developed in producing foundations for mathematics also have strong consequences for existing fields, and produce a theory that is immensely fruitful in its own right.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: [compressed] Second of Maddy's three benefits of set theory. This benefit is more questionable than the first, because the axioms may be invented because of their nice fruit, instead of their accurate account of foundations.
Unified set theory gives a final court of appeal for mathematics [Maddy]
     Full Idea: The single unified area of set theory provides a court of final appeal for questions of mathematical existence and proof.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Maddy's third benefit of set theory. 'Existence' means being modellable in sets, and 'proof' means being derivable from the axioms. The slightly ad hoc character of the axioms makes this a weaker defence.
Set theory brings mathematics into one arena, where interrelations become clearer [Maddy]
     Full Idea: Set theoretic foundations bring all mathematical objects and structures into one arena, allowing relations and interactions between them to be clearly displayed and investigated.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: The first of three benefits of set theory which Maddy lists. The advantages of the one arena seem to be indisputable.
Identifying geometric points with real numbers revealed the power of set theory [Maddy]
     Full Idea: The identification of geometric points with real numbers was among the first and most dramatic examples of the power of set theoretic foundations.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: Hence the clear definition of the reals by Dedekind and Cantor was the real trigger for launching set theory.
The line of rationals has gaps, but set theory provided an ordered continuum [Maddy]
     Full Idea: The structure of a geometric line by rational points left gaps, which were inconsistent with a continuous line. Set theory provided an ordering that contained no gaps. These reals are constructed from rationals, which come from integers and naturals.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.2)
     A reaction: This completes the reduction of geometry to arithmetic and algebra, which was launch 250 years earlier by Descartes.
Set-theory tracks the contours of mathematical depth and fruitfulness [Maddy]
     Full Idea: Our set-theoretic methods track the underlying contours of mathematical depth. ...What sets are, most fundamentally, is markers for these contours ...they are maximally effective trackers of certain trains of mathematical fruitfulness.
     From: Penelope Maddy (Defending the Axioms [2011], 3.4)
     A reaction: This seems to make it more like a map of mathematics than the actual essence of mathematics.
Mathematics rests on the logic of proofs, and on the set theoretic axioms [Maddy]
     Full Idea: Our much loved mathematical knowledge rests on two supports: inexorable deductive logic (the stuff of proof), and the set theoretic axioms.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I Intro)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Number theory doesn't 'reduce' to set theory, because sets have number properties [Maddy]
     Full Idea: I am not suggesting a reduction of number theory to set theory ...There are only sets with number properties; number theory is part of the theory of finite sets.
     From: Penelope Maddy (Sets and Numbers [1981], V)
Sets exist where their elements are, but numbers are more like universals [Maddy]
     Full Idea: A set of things is located where the aggregate of those things is located, ...but a number is simultaneously located at many different places (10 in my hand, and a baseball team) ...so numbers seem more like universals than particulars.
     From: Penelope Maddy (Sets and Numbers [1981], III)
     A reaction: My gut feeling is that Maddy's master idea (of naturalising sets by building them from ur-elements of natural objects) won't work. Sets can work fine in total abstraction from nature.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
If mathematical objects exist, how can we know them, and which objects are they? [Maddy]
     Full Idea: The popular challenges to platonism in philosophy of mathematics are epistemological (how are we able to interact with these objects in appropriate ways) and ontological (if numbers are sets, which sets are they).
     From: Penelope Maddy (Sets and Numbers [1981], I)
     A reaction: These objections refer to Benacerraf's two famous papers - 1965 for the ontology, and 1973 for the epistemology. Though he relied too much on causal accounts of knowledge in 1973, I'm with him all the way.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition doesn't support much mathematics, and we should question its reliability [Maddy, by Shapiro]
     Full Idea: Maddy says that intuition alone does not support very much mathematics; more importantly, a naturalist cannot accept intuition at face value, but must ask why we are justified in relying on intuition.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Stewart Shapiro - Thinking About Mathematics 8.3
     A reaction: It depends what you mean by 'intuition', but I identify with her second objection, that every faculty must ultimately be subject to criticism, which seems to point to a fairly rationalist view of things.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We know mind-independent mathematical truths through sets, which rest on experience [Maddy, by Jenkins]
     Full Idea: Maddy proposes that we can know (some) mind-independent mathematical truths through knowing about sets, and that we can obtain knowledge of sets through experience.
     From: report of Penelope Maddy (Realism in Mathematics [1990]) by Carrie Jenkins - Grounding Concepts 6.5
     A reaction: Maddy has since backed off from this, and now tries to merely defend 'objectivity' about sets (2011:114). My amateurish view is that she is overrating the importance of sets, which merely model mathematics. Look at category theory.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Scientists posit as few entities as possible, but set theorist posit as many as possible [Maddy]
     Full Idea: Crudely, the scientist posits only those entities without which she cannot account for observations, while the set theorist posits as many entities as she can, short of inconsistency.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.5)
Maybe applications of continuum mathematics are all idealisations [Maddy]
     Full Idea: It could turn out that all applications of continuum mathematics in natural sciences are actually instances of idealisation.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The connection of arithmetic to perception has been idealised away in modern infinitary mathematics [Maddy]
     Full Idea: Ordinary perceptual cognition is most likely involved in our grasp of elementary arithmetic, but ...this connection to the physical world has long since been idealized away in the infinitary structures of contemporary pure mathematics.
     From: Penelope Maddy (Defending the Axioms [2011], 2.3)
     A reaction: Despite this, Maddy's quest is for a 'naturalistic' account of mathematics. She ends up defending 'objectivity' (and invoking Tyler Burge), rather than even modest realism. You can't 'idealise away' the counting of objects. I blame Cantor.
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Number words are unusual as adjectives; we don't say 'is five', and numbers always come first [Maddy]
     Full Idea: Number words are not like normal adjectives. For example, number words don't occur in 'is (are)...' contexts except artificially, and they must appear before all other adjectives, and so on.
     From: Penelope Maddy (Sets and Numbers [1981], IV)
     A reaction: [She is citing Benacerraf's arguments]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
We can get arithmetic directly from HP; Law V was used to get HP from the definition of number [Maddy]
     Full Idea: Recent commentators have noted that Frege's versions of the basic propositions of arithmetic can be derived from Hume's Principle alone, that the fatal Law V is only needed to derive Hume's Principle itself from the definition of number.
     From: Penelope Maddy (Naturalism in Mathematics [1997], I.1)
     A reaction: Crispin Wright is the famous exponent of this modern view. Apparently Charles Parsons (1965) first floated the idea.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Tarski's theory of truth shifted the approach away from syntax, to set theory and semantics [Feferman/Feferman on Tarski]
     Full Idea: Tarski's theory of truth has been most influential in eventually creating a shift from the entirely syntactic way of doing things in metamathematics (promoted by Hilbert in the 1920s, in his theory of proofs), towards a set-theoretical, semantic approach.
     From: comment on Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Feferman / Feferman - Alfred Tarski: life and logic Int III
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
The theoretical indispensability of atoms did not at first convince scientists that they were real [Maddy]
     Full Idea: The case of atoms makes it clear that the indispensable appearance of an entity in our best scientific theory is not generally enough to convince scientists that it is real.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: She refers to the period between Dalton and Einstein, when theories were full of atoms, but there was strong reluctance to actually say that they existed, until the direct evidence was incontrovertable. Nice point.
8. Modes of Existence / E. Nominalism / 1. Nominalism / a. Nominalism
I am a deeply convinced nominalist [Tarski]
     Full Idea: I am a nominalist. This is a very deep conviction of mine. ...I am a tortured nominalist.
     From: Alfred Tarski (talk [1965]), quoted by Feferman / Feferman - Alfred Tarski: life and logic Int I
     A reaction: I too am of the nominalist persuasion, but I don't feel justified in such a strong commitment.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Science idealises the earth's surface, the oceans, continuities, and liquids [Maddy]
     Full Idea: In science we treat the earth's surface as flat, we assume the ocean to be infinitely deep, we use continuous functions for what we know to be quantised, and we take liquids to be continuous despite atomic theory.
     From: Penelope Maddy (Naturalism in Mathematics [1997], II.6)
     A reaction: If fussy people like scientists do this all the time, how much more so must the confused multitude be doing the same thing all day?
19. Language / E. Analyticity / 1. Analytic Propositions
Sentences are 'analytical' if every sequence of objects models them [Tarski]
     Full Idea: A class of sentences can be called 'analytical' if every sequence of objects is a model of it.
     From: Alfred Tarski (The Concept of Logical Consequence [1936], p.418)
     A reaction: See Idea 13344 and Idea 13343 for the context of this assertion.
21. Aesthetics / A. Aesthetic Experience / 3. Taste
Taste is the capacity to judge an object or representation which is thought to be beautiful [Tarski, by Schellekens]
     Full Idea: Taste is the faculty for judging an object or a kind of representation through a satisfaction or a dissatisfaction, ...where the object of such a satisfaction is called beautiful.
     From: report of Alfred Tarski (The Concept of Truth for Formalized Languages [1933]) by Elizabeth Schellekens - Immanuel Kant (aesthetics) 1
     A reaction: We usually avoid the word 'faculty' nowadays, because it implies a specific mechanism, but 'capacity' will do. Kant is said to focus specifically on beauty, whereas modern aestheticians have a broader view of the type of subject matter.