Combining Philosophers

All the ideas for Anaxarchus, A.George / D.J.Velleman and Stephen Read

unexpand these ideas     |    start again     |     specify just one area for these philosophers


91 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
     Full Idea: A contextual definition shows how to analyse an expression in situ, by replacing a complete sentence (of a particular form) in which the expression occurs by another in which it does not.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: This is a controversial procedure, which (according to Dummett) Frege originally accepted, and later rejected. It might not be the perfect definition that replacing just the expression would give you, but it is a promising step.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
     Full Idea: When a definition contains a quantifier whose range includes the very entity being defined, the definition is said to be 'impredicative'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Presumably they are 'impredicative' because they do not predicate a new quality in the definiens, but make use of the qualities already known.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / c. Derivation rules of PL
Three traditional names of rules are 'Simplification', 'Addition' and 'Disjunctive Syllogism' [Read]
     Full Idea: Three traditional names for rules are 'Simplification' (P from 'P and Q'), 'Addition' ('P or Q' from P), and 'Disjunctive Syllogism' (Q from 'P or Q' and 'not-P').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / a. Systems of modal logic
Necessity is provability in S4, and true in all worlds in S5 [Read]
     Full Idea: In S4 necessity is said to be informal 'provability', and in S5 it is said to be 'true in every possible world'.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: It seems that the S4 version is proof-theoretic, and the S5 version is semantic.
4. Formal Logic / E. Nonclassical Logics / 4. Fuzzy Logic
There are fuzzy predicates (and sets), and fuzzy quantifiers and modifiers [Read]
     Full Idea: In fuzzy logic, besides fuzzy predicates, which define fuzzy sets, there are also fuzzy quantifiers (such as 'most' and 'few') and fuzzy modifiers (such as 'usually').
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Same say there are positive, negative and neuter free logics [Read]
     Full Idea: It is normal to classify free logics into three sorts; positive free logics (some propositions with empty terms are true), negative free logics (they are false), and neuter free logics (they lack truth-value), though I find this unhelpful and superficial.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
     Full Idea: The 'power set' of A is all the subsets of A. P(A) = {B : B ⊆ A}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
     Full Idea: The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}}. The existence of this set is guaranteed by three applications of the Axiom of Pairing.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10100 for the Axiom of Pairing.
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
     Full Idea: The 'Cartesian Product' of any two sets A and B is the set of all ordered pairs <a, b> in which a ∈ A and b ∈ B, and it is denoted as A x B.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
     Full Idea: The idea of grouping together objects that share some property is a common one in mathematics, ...and the technique most often involves the use of equivalence relations.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
     Full Idea: A relation is an equivalence relation if it is reflexive, symmetric and transitive. The 'same first letter' is an equivalence relation on the set of English words. Any relation that puts a partition into clusters will be equivalence - and vice versa.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is a key concept in the Fregean strategy for defining numbers.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
     Full Idea: ZFC is a theory concerned only with sets. Even the elements of all of the sets studied in ZFC are also sets (whose elements are also sets, and so on). This rests on one clearly pure set, the empty set Φ. ..Mathematics only needs pure sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This makes ZFC a much more metaphysically comfortable way to think about sets, because it can be viewed entirely formally. It is rather hard to disentangle a chair from the singleton set of that chair.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
     Full Idea: The Axiom of Extensionality says that for all sets x and y, if x and y have the same elements then x = y.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems fine in pure set theory, but hits the problem of renates and cordates in the real world. The elements coincide, but the axiom can't tell you why they coincide.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
     Full Idea: The Axiom of Pairing says that for all sets x and y, there is a set z containing x and y, and nothing else. In symbols: ∀x∀y∃z∀w(w ∈ z ↔ (w = x ∨ w = y)).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: See Idea 10099 for an application of this axiom.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
     Full Idea: The Axiom of Reducibility ...had the effect of making impredicative definitions possible.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
     Full Idea: Sets, unlike extensions, fail to correspond to all concepts. We can prove in ZFC that there is no set corresponding to the concept 'set' - that is, there is no set of all sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: This is rather an important point for Frege. However, all concepts have extensions, but they may be proper classes, rather than precisely defined sets.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
Realisms like the full Comprehension Principle, that all good concepts determine sets [Read]
     Full Idea: Hard-headed realism tends to embrace the full Comprehension Principle, that every well-defined concept determines a set.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: This sort of thing gets you into trouble with Russell's paradox (though that is presumably meant to be excluded somehow by 'well-defined'). There are lots of diluted Comprehension Principles.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
     Full Idea: The problem with reducing arithmetic to ZFC is not that this theory is inconsistent (as far as we know it is not), but rather that is not completely general, and for this reason not logical. For example, it asserts the existence of sets.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Note that ZFC has not been proved consistent.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
If logic is topic-neutral that means it delves into all subjects, rather than having a pure subject matter [Read]
     Full Idea: The topic-neutrality of logic need not mean there is a pure subject matter for logic; rather, that the logician may need to go everywhere, into mathematics and even into metaphysics.
     From: Stephen Read (Formal and Material Consequence [1994], 'Logic')
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
Not all validity is captured in first-order logic [Read]
     Full Idea: We must recognise that first-order classical logic is inadequate to describe all valid consequences, that is, all cases in which it is impossible for the premisses to be true and the conclusion false.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is despite the fact that first-order logic is 'complete', in the sense that its own truths are all provable.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
The non-emptiness of the domain is characteristic of classical logic [Read]
     Full Idea: The non-emptiness of the domain is characteristic of classical logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Semantics must precede proof in higher-order logics, since they are incomplete [Read]
     Full Idea: For the realist, study of semantic structures comes before study of proofs. In higher-order logic is has to, for the logics are incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.9)
     A reaction: This seems to be an important general observation about any incomplete system, such as Peano arithmetic. You may dream the old rationalist dream of starting from the beginning and proving everything, but you can't. Start with truth and meaning.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
We should exclude second-order logic, precisely because it captures arithmetic [Read]
     Full Idea: Those who believe mathematics goes beyond logic use that fact to argue that classical logic is right to exclude second-order logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / B. Logical Consequence / 1. Logical Consequence
Not all arguments are valid because of form; validity is just true premises and false conclusion being impossible [Read]
     Full Idea: Belief that every valid argument is valid in virtue of form is a myth. ..Validity is a question of the impossibility of true premises and false conclusion for whatever reason, and some arguments are materially valid and the reason is not purely logical.
     From: Stephen Read (Formal and Material Consequence [1994], 'Logic')
     A reaction: An example of a non-logical reason is the transitive nature of 'taller than'. Conceptual connections are the usual example, as in 'it's red so it is coloured'. This seems to be a defence of the priority of semantic consequence in logic.
If the logic of 'taller of' rests just on meaning, then logic may be the study of merely formal consequence [Read]
     Full Idea: In 'A is taller than B, and B is taller than C, so A is taller than C' this can been seen as a matter of meaning - it is part of the meaning of 'taller' that it is transitive, but not of logic. Logic is now seen as the study of formal consequence.
     From: Stephen Read (Formal and Material Consequence [1994], 'Reduct')
     A reaction: I think I find this approach quite appealing. Obviously you can reason about taller-than relations, by putting the concepts together like jigsaw pieces, but I tend to think of logic as something which is necessarily implementable on a machine.
Maybe arguments are only valid when suppressed premises are all stated - but why? [Read]
     Full Idea: Maybe some arguments are really only valid when a suppressed premise is made explicit, as when we say that 'taller than' is a transitive concept. ...But what is added by making the hidden premise explicit? It cannot alter the soundness of the argument.
     From: Stephen Read (Formal and Material Consequence [1994], 'Suppress')
A theory of logical consequence is a conceptual analysis, and a set of validity techniques [Read]
     Full Idea: A theory of logical consequence, while requiring a conceptual analysis of consequence, also searches for a set of techniques to determine the validity of particular arguments.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Logical consequence isn't just a matter of form; it depends on connections like round-square [Read]
     Full Idea: If classical logic insists that logical consequence is just a matter of the form, we fail to include as valid consequences those inferences whose correctness depends on the connections between non-logical terms (such as 'round' and 'square').
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: He suggests that an inference such as 'round, so not square' should be labelled as 'materially valid'.
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
In modus ponens the 'if-then' premise contributes nothing if the conclusion follows anyway [Read]
     Full Idea: A puzzle about modus ponens is that the major premise is either false or unnecessary: A, If A then B / so B. If the major premise is true, then B follows from A, so the major premise is redundant. So it is false or not needed, and contributes nothing.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: Not sure which is the 'major premise' here, but it seems to be saying that the 'if A then B' is redundant. If I say 'it's raining so the grass is wet', it seems pointless to slip in the middle the remark that rain implies wet grass. Good point.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
     Full Idea: A hallmark of our realist stance towards the natural world is that we are prepared to assert the Law of Excluded Middle for all statements about it. For all statements S, either S is true, or not-S is true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
     A reaction: Personally I firmly subscribe to realism, so I suppose I must subscribe to Excluded Middle. ...Provided the statement is properly formulated. Or does liking excluded middle lead me to realism?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Logical connectives contain no information, but just record combination relations between facts [Read]
     Full Idea: The logical connectives are useful for bundling information, that B follows from A, or that one of A or B is true. ..They import no information of their own, but serve to record combinations of other facts.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: Anyone who suggests a link between logic and 'facts' gets my vote, so this sounds a promising idea. However, logical truths have a high degree of generality, which seems somehow above the 'facts'.
5. Theory of Logic / E. Structures of Logic / 8. Theories in Logic
A theory is logically closed, which means infinite premisses [Read]
     Full Idea: A 'theory' is any logically closed set of propositions, ..and since any proposition has infinitely many consequences, including all the logical truths, so that theories have infinitely many premisses.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Read is introducing this as the essential preliminary to an account of the Compactness Theorem, which relates these infinite premisses to the finite.
5. Theory of Logic / G. Quantification / 1. Quantification
Quantifiers are second-order predicates [Read]
     Full Idea: Quantifiers are second-order predicates.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: [He calls this 'Frege's insight'] They seem to be second-order in Tarski's sense, that they are part of a metalanguage about the sentence, rather than being a part of the sentence.
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
In second-order logic the higher-order variables range over all the properties of the objects [Read]
     Full Idea: The defining factor of second-order logic is that, while the domain of its individual variables may be arbitrary, the range of the first-order variables is all the properties of the objects in its domain (or, thinking extensionally, of the sets objects).
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The key point is that the domain is 'all' of the properties. How many properties does an object have. You need to decide whether you believe in sparse or abundant properties (I vote for very sparse indeed).
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth is the conclusion of a valid inference with no premisses [Read]
     Full Idea: Logical truth is a degenerate, or extreme, case of consequence. A logical truth is the conclusion of a valid inference with no premisses, or a proposition in the premisses of an argument which is unnecessary or may be suppressed.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
     Full Idea: A 'model' of a theory is an assignment of meanings to the symbols of its language which makes all of its axioms come out true.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: If the axioms are all true, and the theory is sound, then all of the theorems will also come out true.
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
     Full Idea: Mathematicians tend to regard the differences between isomorphic mathematical structures as unimportant.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This seems to be a pointer towards Structuralism as the underlying story in mathematics. The intrinsic character of so-called 'objects' seems unimportant. How theories map onto one another (and onto the world?) is all that matters?
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Any first-order theory of sets is inadequate [Read]
     Full Idea: Any first-order theory of sets is inadequate because of the Löwenheim-Skolem-Tarski property, and the consequent Skolem paradox.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The limitation is in giving an account of infinities.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
     Full Idea: Consistency is a purely syntactic property, unlike the semantic property of soundness.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
     Full Idea: If there is a sentence such that both the sentence and its negation are theorems of a theory, then the theory is 'inconsistent'. Otherwise it is 'consistent'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
     Full Idea: Soundness is a semantic property, unlike the purely syntactic property of consistency.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A 'complete' theory contains either any sentence or its negation [George/Velleman]
     Full Idea: If there is a sentence such that neither the sentence nor its negation are theorems of a theory, then the theory is 'incomplete'. Otherwise it is 'complete'.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: Interesting questions are raised about undecidable sentences, irrelevant sentences, unknown sentences....
5. Theory of Logic / K. Features of Logics / 6. Compactness
Compactness is when any consequence of infinite propositions is the consequence of a finite subset [Read]
     Full Idea: Classical logical consequence is compact, which means that any consequence of an infinite set of propositions (such as a theory) is a consequence of some finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness does not deny that an inference can have infinitely many premisses [Read]
     Full Idea: Compactness does not deny that an inference can have infinitely many premisses. It can; but classically, it is valid if and only if the conclusion follows from a finite subset of them.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness blocks the proof of 'for every n, A(n)' (as the proof would be infinite) [Read]
     Full Idea: Compact consequence undergenerates - there are intuitively valid consequences which it marks as invalid, such as the ω-rule, that if A holds of the natural numbers, then 'for every n, A(n)', but the proof of that would be infinite, for each number.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Compactness makes consequence manageable, but restricts expressive power [Read]
     Full Idea: Compactness is a virtue - it makes the consequence relation more manageable; but it is also a limitation - it limits the expressive power of the logic.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: The major limitation is that wholly infinite proofs are not permitted, as in Idea 10977.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
Self-reference paradoxes seem to arise only when falsity is involved [Read]
     Full Idea: It cannot be self-reference alone that is at fault. Rather, what seems to cause the problems in the paradoxes is the combination of self-reference with falsity.
     From: Stephen Read (Thinking About Logic [1995], Ch.6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
     Full Idea: We can think of rational numbers as providing answers to division problems involving integers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Cf. Idea 10102.
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
     Full Idea: In defining the integers in set theory, our definition will be motivated by thinking of the integers as answers to subtraction problems involving natural numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Typical of how all of the families of numbers came into existence; they are 'invented' so that we can have answers to problems, even if we can't interpret the answers. It it is money, we may say the minus-number is a 'debt', but is it? Cf Idea 10106.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
     Full Idea: One reason for introducing the real numbers is to provide answers to square root problems.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Presumably the other main reasons is to deal with problems of exact measurement. It is interesting that there seem to be two quite distinct reasons for introducing the reals. Cf. Ideas 10102 and 10106.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
     Full Idea: The logicist idea is that if mathematics is logic, and logic is the most general of disciplines, one that applies to all rational thought regardless of its content, then it is not surprising that mathematics is widely applicable.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.2)
     A reaction: Frege was keen to emphasise this. You are left wondering why pure logic is applicable to the physical world. The only account I can give is big-time Platonism, or Pythagoreanism. Logic reveals the engine-room of nature, where the design is done.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
Infinite cuts and successors seems to suggest an actual infinity there waiting for us [Read]
     Full Idea: Every potential infinity seems to suggest an actual infinity - e.g. generating successors suggests they are really all there already; cutting the line suggests that the point where the cut is made is already in place.
     From: Stephen Read (Thinking About Logic [1995], Ch.8)
     A reaction: Finding a new gambit in chess suggests it was there waiting for us, but we obviously invented chess. Daft.
The classical mathematician believes the real numbers form an actual set [George/Velleman]
     Full Idea: Unlike the intuitionist, the classical mathematician believes in an actual set that contains all the real numbers.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Although second-order arithmetic is incomplete, it can fully model normal arithmetic [Read]
     Full Idea: Second-order arithmetic is categorical - indeed, there is a single formula of second-order logic whose only model is the standard model ω, consisting of just the natural numbers, with all of arithmetic following. It is nevertheless incomplete.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: This is the main reason why second-order logic has a big fan club, despite the logic being incomplete (as well as the arithmetic).
Second-order arithmetic covers all properties, ensuring categoricity [Read]
     Full Idea: Second-order arithmetic can rule out the non-standard models (with non-standard numbers). Its induction axiom crucially refers to 'any' property, which gives the needed categoricity for the models.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
     Full Idea: The first-order version of the induction axiom is weaker than the second-order, because the latter applies to all concepts, but the first-order applies only to concepts definable by a formula in the first-order language of number theory.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7 n7)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
     Full Idea: The idea behind the proofs of the Incompleteness Theorems is to use the language of Peano Arithmetic to talk about the formal system of Peano Arithmetic itself.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
     A reaction: The mechanism used is to assign a Gödel Number to every possible formula, so that all reasonings become instances of arithmetic.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
     Full Idea: For any set x, we define the 'successor' of x to be the set S(x) = x U {x}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: This is the Fregean approach to successor, where the Dedekind approach takes 'successor' to be a primitive. Frege 1884:§76.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
     Full Idea: The derivability of Peano's Postulates from Hume's Principle in second-order logic has been dubbed 'Frege's Theorem', (though Frege would not have been interested, because he didn't think Hume's Principle gave an adequate definition of numebrs).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8 n1)
     A reaction: Frege said the numbers were the sets which were the extensions of the sets created by Hume's Principle.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / g. Von Neumann numbers
Von Neumann numbers are helpful, but don't correctly describe numbers [Read]
     Full Idea: The Von Neumann numbers have a structural isomorphism to the natural numbers - each number is the set of all its predecessors, so 2 is the set of 0 and 1. This helps proofs, but is unacceptable. 2 is not a set with two members, or a member of 3.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
     Full Idea: The Peano Postulates can be proven in ZFC.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.7)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
     Full Idea: One might well wonder whether talk of abstract entities is less a solution to the empiricist's problem of how a priori knowledge is possible than it is a label for the problem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Intro)
     A reaction: This pinpoints my view nicely. What the platonist postulates is remote, bewildering, implausible and useless!
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
     Full Idea: As, in the logicist view, mathematics is about nothing particular, it is little wonder that nothing in particular needs to be observed in order to acquire mathematical knowledge.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002])
     A reaction: At the very least we can say that no one would have even dreamt of the general system of arithmetic is they hadn't had experience of the particulars. Frege thought generality ensured applicability, but extreme generality might entail irrelevance.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
     Full Idea: In the unramified theory of types, all objects are classified into a hierarchy of types. The lowest level has individual objects that are not sets. Next come sets whose elements are individuals, then sets of sets, etc. Variables are confined to types.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: The objects are Type 0, the basic sets Type 1, etc.
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
     Full Idea: The theory of types seems to rule out harmless sets as well as paradoxical ones. If a is an individual and b is a set of individuals, then in type theory we cannot talk about the set {a,b}.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Since we cheerfully talk about 'Cicero and other Romans', this sounds like a rather disasterous weakness.
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
     Full Idea: A problem with type theory is that there are only finitely many individuals, and finitely many sets of individuals, and so on. The hierarchy may be infinite, but each level is finite. Mathematics required an axiom asserting infinitely many individuals.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
     A reaction: Most accounts of mathematics founder when it comes to infinities. Perhaps we should just reject them?
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
     Full Idea: If a is an individual and b is a set of individuals, then in the theory of types we cannot talk about the set {a,b}, since it is not an individual or a set of individuals, ...but it is hard to see what harm can come from it.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.3)
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
     Full Idea: In the first instance all bounded quantifications are finitary, for they can be viewed as abbreviations for conjunctions and disjunctions.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
     A reaction: This strikes me as quite good support for finitism. The origin of a concept gives a good guide to what it really means (not a popular view, I admit). When Aristotle started quantifying, I suspect of he thought of lists, not totalities.
Much infinite mathematics can still be justified finitely [George/Velleman]
     Full Idea: It is possible to use finitary reasoning to justify a significant part of infinitary mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: This might save Hilbert's project, by gradually accepting into the fold all the parts which have been giving a finitist justification.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
     Full Idea: The intuitionists are the idealists of mathematics.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.6)
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
     Full Idea: For intuitionists, truth is not independent of proof, but this independence is precisely what seems to be suggested by Gödel's First Incompleteness Theorem.
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.8)
     A reaction: Thus Gödel was worse news for the Intuitionists than he was for Hilbert's Programme. Gödel himself responded by becoming a platonist about his unprovable truths.
7. Existence / D. Theories of Reality / 10. Vagueness / d. Vagueness as linguistic
Would a language without vagueness be usable at all? [Read]
     Full Idea: We must ask whether a language without vagueness would be usable at all.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: Popper makes a similar remark somewhere, with which I heartily agreed. This is the idea of 'spreading the word' over the world, which seems the right way of understanding it.
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluations say there is a cut-off somewhere, but at no particular place [Read]
     Full Idea: The supervaluation approach to vagueness is to construe vague predicates not as ones with fuzzy borderlines and no cut-off, but as having a cut-off somewhere, but in no particular place.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: Presumably you narrow down the gap by supervaluation, then split the difference to get a definite value.
A 'supervaluation' gives a proposition consistent truth-value for classical assignments [Read]
     Full Idea: A 'supervaluation' says a proposition is true if it is true in all classical extensions of the original partial valuation. Thus 'A or not-A' has no valuation for an empty name, but if 'extended' to make A true or not-true, not-A always has opposite value.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
Identities and the Indiscernibility of Identicals don't work with supervaluations [Read]
     Full Idea: In supervaluations, the Law of Identity has no value for empty names, and remains so if extended. The Indiscernibility of Identicals also fails if extending it for non-denoting terms, where Fa comes out true and Fb false.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
9. Objects / A. Existence of Objects / 5. Individuation / d. Individuation by haecceity
A haecceity is a set of individual properties, essential to each thing [Read]
     Full Idea: The haecceitist (a neologism coined by Duns Scotus, pronounced 'hex-ee-it-ist', meaning literally 'thisness') believes that each thing has an individual essence, a set of properties which are essential to it.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: This seems to be a difference of opinion over whether a haecceity is a set of essential properties, or a bare particular. The key point is that it is unique to each entity.
10. Modality / A. Necessity / 2. Nature of Necessity
Equating necessity with truth in every possible world is the S5 conception of necessity [Read]
     Full Idea: The equation of 'necessity' with 'true in every possible world' is known as the S5 conception, corresponding to the strongest of C.I.Lewis's five modal systems.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: Are the worlds naturally, or metaphysically, or logically possible?
10. Modality / B. Possibility / 8. Conditionals / a. Conditionals
The point of conditionals is to show that one will accept modus ponens [Read]
     Full Idea: The point of conditionals is to show that one will accept modus ponens.
     From: Stephen Read (Thinking About Logic [1995], Ch.3)
     A reaction: [He attributes this idea to Frank Jackson] This makes the point, against Grice, that the implication of conditionals is not conversational but a matter of logical convention. See Idea 21396 for a very different view.
The standard view of conditionals is that they are truth-functional [Read]
     Full Idea: The standard view of conditionals is that they are truth-functional, that is, that their truth-values are determined by the truth-values of their constituents.
     From: Stephen Read (Thinking About Logic [1995], Ch.3)
Some people even claim that conditionals do not express propositions [Read]
     Full Idea: Some people even claim that conditionals do not express propositions.
     From: Stephen Read (Thinking About Logic [1995], Ch.7)
     A reaction: See Idea 14283, where this appears to have been 'proved' by Lewis, and is not just a view held by some people.
10. Modality / B. Possibility / 8. Conditionals / d. Non-truthfunction conditionals
Conditionals are just a shorthand for some proof, leaving out the details [Read]
     Full Idea: Truth enables us to carry various reports around under certain descriptions ('what Iain said') without all the bothersome detail. Similarly, conditionals enable us to transmit a record of proof without its detail.
     From: Stephen Read (Formal and Material Consequence [1994], 'Repres')
     A reaction: This is his proposed Redundancy Theory of conditionals. It grows out of the problem with Modus Ponens mentioned in Idea 14184. To say that there is always an implied 'proof' seems a large claim.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
Knowledge of possible worlds is not causal, but is an ontology entailed by semantics [Read]
     Full Idea: The modal Platonist denies that knowledge always depends on a causal relation. The reality of possible worlds is an ontological requirement, to secure the truth-values of modal propositions.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: [Reply to Idea 10982] This seems to be a case of deriving your metaphyics from your semantics, of which David Lewis seems to be guilty, and which strikes me as misguided.
10. Modality / E. Possible worlds / 1. Possible Worlds / c. Possible worlds realism
How can modal Platonists know the truth of a modal proposition? [Read]
     Full Idea: If modal Platonism was true, how could we ever know the truth of a modal proposition?
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: I take this to be very important. Our knowledge of modal truths must depend on our knowledge of the actual world. The best answer seems to involve reference to the 'powers' of the actual world. A reply is in Idea 10983.
10. Modality / E. Possible worlds / 1. Possible Worlds / d. Possible worlds actualism
Actualism is reductionist (to parts of actuality), or moderate realist (accepting real abstractions) [Read]
     Full Idea: There are two main forms of actualism: reductionism, which seeks to construct possible worlds out of some more mundane material; and moderate realism, in which the actual concrete world is contrasted with abstract, but none the less real, possible worlds.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: I am a reductionist, as I do not take abstractions to be 'real' (precisely because they have been 'abstracted' from the things that are real). I think I will call myself a 'scientific modalist' - we build worlds from possibilities, discovered by science.
10. Modality / E. Possible worlds / 2. Nature of Possible Worlds / c. Worlds as propositions
A possible world is a determination of the truth-values of all propositions of a domain [Read]
     Full Idea: A possible world is a complete determination of the truth-values of all propositions over a certain domain.
     From: Stephen Read (Thinking About Logic [1995], Ch.2)
     A reaction: Even if the domain is very small? Even if the world fitted the logic nicely, but was naturally impossible?
10. Modality / E. Possible worlds / 3. Transworld Objects / c. Counterparts
If worlds are concrete, objects can't be present in more than one, and can only have counterparts [Read]
     Full Idea: If each possible world constitutes a concrete reality, then no object can be present in more than one world - objects may have 'counterparts', but cannot be identical with them.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: This explains clearly why in Lewis's modal realist scheme he needs counterparts instead of rigid designation. Sounds like a slippery slope. If you say 'Humphrey might have won the election', who are you talking about?
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
15. Nature of Minds / C. Capacities of Minds / 3. Abstraction by mind
The mind abstracts ways things might be, which are nonetheless real [Read]
     Full Idea: Ways things might be are real, but only when abstracted from the actual way things are. They are brought out and distinguished by the mind, by abstraction, but are not dependent on mind for their existence.
     From: Stephen Read (Thinking About Logic [1995], Ch.4)
     A reaction: To me this just flatly contradicts itself. The idea that the mind can 'bring something out' by its operations, with the result being then accepted as part of reality is nonsense on stilts. What is real is the powers that make the possibilities.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
     Full Idea: Corresponding to every concept there is a class (some classes will be sets, the others proper classes).
     From: A.George / D.J.Velleman (Philosophies of Mathematics [2002], Ch.4)
19. Language / C. Assigning Meanings / 4. Compositionality
Negative existentials with compositionality make the whole sentence meaningless [Read]
     Full Idea: A problem with compositionality is negative existential propositions. If some of the terms of the proposition are empty, and don't refer, then compositionality implies that the whole will lack meaning too.
     From: Stephen Read (Thinking About Logic [1995], Ch.5)
     A reaction: I don't agree. I don't see why compositionality implies holism about sentence-meaning. If I say 'that circular square is a psychopath', you understand the predication, despite being puzzled by the singular term.
19. Language / D. Propositions / 1. Propositions
A proposition objectifies what a sentence says, as indicative, with secure references [Read]
     Full Idea: A proposition makes an object out of what is said or expressed by the utterance of a certain sort of sentence, namely, one in the indicative mood which makes sense and doesn't fail in its references. It can then be an object of thought and belief.
     From: Stephen Read (Thinking About Logic [1995], Ch.1)
     A reaction: Nice, but two objections: I take it to be crucial to propositions that they eliminate ambiguities, and I take it that animals are capable of forming propositions. Read seems to regard them as fictions, but I take them to be brain events.