Combining Philosophers

All the ideas for Anaxarchus, Edwin D. Mares and William W. Tait

unexpand these ideas     |    start again     |     specify just one area for these philosophers


37 ideas

1. Philosophy / E. Nature of Metaphysics / 7. Against Metaphysics
After 1903, Husserl avoids metaphysical commitments [Mares]
     Full Idea: In Husserl's philosophy after 1903, he is unwilling to commit himself to any specific metaphysical views.
     From: Edwin D. Mares (A Priori [2011], 08.2)
1. Philosophy / F. Analytic Philosophy / 7. Limitations of Analysis
Analytic philosophy focuses too much on forms of expression, instead of what is actually said [Tait]
     Full Idea: The tendency to attack forms of expression rather than attempting to appreciate what is actually being said is one of the more unfortunate habits that analytic philosophy inherited from Frege.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IV)
     A reaction: The key to this, I say, is to acknowledge the existence of propositions (in brains). For example, this belief will make teachers more sympathetic to pupils who are struggling to express an idea, and verbal nit-picking becomes totally irrelevant.
2. Reason / A. Nature of Reason / 9. Limits of Reason
Inconsistency doesn't prevent us reasoning about some system [Mares]
     Full Idea: We are able to reason about inconsistent beliefs, stories, and theories in useful and important ways
     From: Edwin D. Mares (Negation [2014], 1)
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionism as natural deduction has no rule for negation [Mares]
     Full Idea: In intuitionist logic each connective has one introduction and one elimination rule attached to it, but in the classical system we have to add an extra rule for negation.
     From: Edwin D. Mares (Negation [2014], 5.5)
     A reaction: How very intriguing. Mares says there are other ways to achieve classical logic, but they all seem rather cumbersome.
Intuitionist logic looks best as natural deduction [Mares]
     Full Idea: Intuitionist logic appears most attractive in the form of a natural deduction system.
     From: Edwin D. Mares (Negation [2014], 5.5)
4. Formal Logic / E. Nonclassical Logics / 3. Many-Valued Logic
Three-valued logic is useful for a theory of presupposition [Mares]
     Full Idea: One reason for wanting a three-valued logic is to act as a basis of a theory of presupposition.
     From: Edwin D. Mares (Negation [2014], 3.1)
     A reaction: [He cites Strawson 1950] The point is that you can get a result when the presupposition does not apply, as in talk of the 'present King of France'.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
The null set was doubted, because numbering seemed to require 'units' [Tait]
     Full Idea: The conception that what can be numbered is some object (including flocks of sheep) relative to a partition - a choice of unit - survived even in the late nineteenth century in the form of the rejection of the null set (and difficulties with unit sets).
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], IX)
     A reaction: This old view can't be entirely wrong! Frege makes the point that if asked to count a pack of cards, you must decide whether to count cards, or suits, or pips. You may not need a 'unit', but you need a concept. 'Units' name concept-extensions nicely!
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
We can have a series with identical members [Tait]
     Full Idea: Why can't we have a series (as opposed to a linearly ordered set) all of whose members are identical, such as (a, a, a...,a)?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VII)
     A reaction: The question is whether the items order themselves, which presumably the natural numbers are supposed to do, or whether we impose the order (and length) of the series. What decides how many a's there are? Do we order, or does nature?
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Material implication (and classical logic) considers nothing but truth values for implications [Mares]
     Full Idea: The problem with material implication, and classical logic more generally, is that it considers only the truth value of formulas in deciding whether to make an implication stand between them. It ignores everything else.
     From: Edwin D. Mares (Negation [2014], 7.1)
     A reaction: The obvious problem case is conditionals, and relevance is an obvious extra principle that comes to mind.
In classical logic the connectives can be related elegantly, as in De Morgan's laws [Mares]
     Full Idea: Among the virtues of classical logic is the fact that the connectives are related to one another in elegant ways that often involved negation. For example, De Morgan's Laws, which involve negation, disjunction and conjunction.
     From: Edwin D. Mares (Negation [2014], 2.2)
     A reaction: Mares says these enable us to take disjunction or conjunction as primitive, and then define one in terms of the other, using negation as the tool.
5. Theory of Logic / D. Assumptions for Logic / 1. Bivalence
Excluded middle standardly implies bivalence; attacks use non-contradiction, De M 3, or double negation [Mares]
     Full Idea: On its standard reading, excluded middle tells us that bivalence holds. To reject excluded middle, we must reject either non-contradiction, or ¬(A∧B) ↔ (¬A∨¬B) [De Morgan 3], or the principle of double negation. All have been tried.
     From: Edwin D. Mares (Negation [2014], 2.2)
Standard disjunction and negation force us to accept the principle of bivalence [Mares]
     Full Idea: If we treat disjunction in the standard way and take the negation of a statement A to mean that A is false, accepting excluded middle forces us also to accept the principle of bivalence, which is the dictum that every statement is either true or false.
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: Mates's point is to show that passively taking the normal account of negation for granted has important implications.
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The connectives are studied either through model theory or through proof theory [Mares]
     Full Idea: In studying the logical connectives, philosophers of logic typically adopt the perspective of either model theory (givng truth conditions of various parts of the language), or of proof theory (where use in a proof system gives the connective's meaning).
     From: Edwin D. Mares (Negation [2014], 1)
     A reaction: [compressed] The commonest proof theory is natural deduction, giving rules for introduction and elimination. Mates suggests moving between the two views is illuminating.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Many-valued logics lack a natural deduction system [Mares]
     Full Idea: Many-valued logics do not have reasonable natural deduction systems.
     From: Edwin D. Mares (Negation [2014], 1)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Situation semantics for logics: not possible worlds, but information in situations [Mares]
     Full Idea: Situation semantics for logics consider not what is true in worlds, but what information is contained in situations.
     From: Edwin D. Mares (Negation [2014], 6.2)
     A reaction: Since many theoretical physicists seem to think that 'information' might be the most basic concept of a natural ontology, this proposal is obviously rather appealing. Barwise and Perry are the authors of the theory.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Mathematics must be based on axioms, which are true because they are axioms, not vice versa [Tait, by Parsons,C]
     Full Idea: The axiomatic conception of mathematics is the only viable one. ...But they are true because they are axioms, in contrast to the view advanced by Frege (to Hilbert) that to be a candidate for axiomhood a statement must be true.
     From: report of William W. Tait (Intro to 'Provenance of Pure Reason' [2005], p.4) by Charles Parsons - Review of Tait 'Provenance of Pure Reason' §2
     A reaction: This looks like the classic twentieth century shift in the attitude to axioms. The Greek idea is that they must be self-evident truths, but the Tait-style view is that they are just the first steps in establishing a logical structure. I prefer the Greeks.
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is semantic, but non-contradiction is syntactic [Mares]
     Full Idea: The difference between the principle of consistency and the principle of non-contradiction is that the former must be stated in a semantic metalanguage, whereas the latter is a thesis of logical systems.
     From: Edwin D. Mares (Negation [2014], 2.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
The truth of the axioms doesn't matter for pure mathematics, but it does for applied [Mares]
     Full Idea: The epistemological burden of showing that the axioms are true is removed if we are only studying pure mathematics. If, however, we want to look at applied mathematics, then this burden returns.
     From: Edwin D. Mares (A Priori [2011], 11.4)
     A reaction: One of those really simple ideas that hits the spot. Nice. The most advanced applied mathematics must rest on counting and measuring.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematics is relations between properties we abstract from experience [Mares]
     Full Idea: Aristotelians treat mathematical facts as relations between properties. These properties, moreover, are abstracted from our experience of things. ...This view finds a natural companion in structuralism.
     From: Edwin D. Mares (A Priori [2011], 11.7)
     A reaction: This is the view of mathematics that I personally favour. The view that we abstract 'five' from a group of five pebbles is too simplistic, but this is the right general approach.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
For intuitionists there are not numbers and sets, but processes of counting and collecting [Mares]
     Full Idea: For the intuitionist, talk of mathematical objects is rather misleading. For them, there really isn't anything that we should call the natural numbers, but instead there is counting. What intuitionists study are processes, such as counting and collecting.
     From: Edwin D. Mares (Negation [2014], 5.1)
     A reaction: That is the first time I have seen mathematical intuitionism described in a way that made it seem attractive. One might compare it to a metaphysics based on processes. Apparently intuitionists struggle with infinite sets and real numbers.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Light in straight lines is contingent a priori; stipulated as straight, because they happen to be so [Mares]
     Full Idea: It seems natural to claim that light rays moving in straight lines is contingent but a priori. Scientists stipulate that they are the standard by which we measure straightness, but their appropriateness for this task is a contingent feature of the world.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: This resembles the metre rule in Paris. It is contingent that something is a certain way, so we make being that way a conventional truth, which can therefore be known via the convention, rather than via the contingent fact.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
Aristotelians dislike the idea of a priori judgements from pure reason [Mares]
     Full Idea: Aristotelians tend to eschew talk about a special faculty of pure reason that is responsible for all of our a priori judgements.
     From: Edwin D. Mares (A Priori [2011], 08.9)
     A reaction: He is invoking Carrie Jenkins's idea that the a priori is knowledge of relations between concepts which have been derived from experience. Nice idea. We thus have an empirical a priori, integrated into the natural world. Abstraction must be involved.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Empiricists say rationalists mistake imaginative powers for modal insights [Mares]
     Full Idea: Empiricist critiques of rationalism often accuse rationalists of confusing the limits of their imaginations with real insight into what is necessarily true.
     From: Edwin D. Mares (A Priori [2011], 03.01)
     A reaction: See ideas on 'Conceivable as possible' for more on this. You shouldn't just claim to 'see' that something is true, but be willing to offer some sort of reason, truthmaker or grounding. Without that, you may be right, but you are on weak ground.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
The most popular view is that coherent beliefs explain one another [Mares]
     Full Idea: In what is perhaps the most popular version of coherentism, a system of beliefs is a set of beliefs that explain one another.
     From: Edwin D. Mares (A Priori [2011], 01.5)
     A reaction: These seems too simple. My first response would be that explanations are what result from coherence sets of beliefs. I may have beliefs that explain nothing, but at least have the virtue of being coherent.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
14. Science / B. Scientific Theories / 3. Instrumentalism
Operationalism defines concepts by our ways of measuring them [Mares]
     Full Idea: The central claim of Percy Bridgman's theory of operational definitions (1920s), is that definitions of certain scientific concepts are given by the ways that we have to measure them. For example, a straight line is 'the path of a light ray'.
     From: Edwin D. Mares (A Priori [2011], 02.9)
     A reaction: It is often observed that this captures the spirit of Special Relativity.
18. Thought / D. Concepts / 2. Origin of Concepts / b. Empirical concepts
Aristotelian justification uses concepts abstracted from experience [Mares]
     Full Idea: Aristotelian justification is the process of reasoning using concepts that are abstracted from experience (rather than, say, concepts that are innate or those that we associate with the meanings of words).
     From: Edwin D. Mares (A Priori [2011], 08.1)
     A reaction: See Carrie Jenkins for a full theory along these lines (though she doesn't mention Aristotle). This is definitely my preferred view of concepts.
18. Thought / D. Concepts / 4. Structure of Concepts / c. Classical concepts
The essence of a concept is either its definition or its conceptual relations? [Mares]
     Full Idea: In the 'classical theory' a concept includes in it those concepts that define it. ...In the 'theory theory' view the content of a concept is determined by its relationship to other concepts.
     From: Edwin D. Mares (A Priori [2011], 03.10)
     A reaction: Neither of these seem to give an intrinsic account of a concept, or any account of how the whole business gets off the ground.
18. Thought / E. Abstraction / 2. Abstracta by Selection
Abstraction is 'logical' if the sense and truth of the abstraction depend on the concrete [Tait]
     Full Idea: If the sense of a proposition about the abstract domain is given in terms of the corresponding proposition about the (relatively) concrete domain, ..and the truth of the former is founded upon the truth of the latter, then this is 'logical abstraction'.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: The 'relatively' in parentheses allows us to apply his idea to levels of abstraction, and not just to the simple jump up from the concrete. I think Tait's proposal is excellent, rather than purloining 'abstraction' for an internal concept within logic.
Cantor and Dedekind use abstraction to fix grammar and objects, not to carry out proofs [Tait]
     Full Idea: Although (in Cantor and Dedekind) abstraction does not (as has often been observed) play any role in their proofs, but it does play a role, in that it fixes the grammar, the domain of meaningful propositions, and so determining the objects in the proofs.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: [compressed] This is part of a defence of abstractionism in Cantor and Dedekind (see K.Fine also on the subject). To know the members of a set, or size of a domain, you need to know the process or function which created the set.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstraction may concern the individuation of the set itself, not its elements [Tait]
     Full Idea: A different reading of abstraction is that it concerns, not the individuating properties of the elements relative to one another, but rather the individuating properties of the set itself, for example the concept of what is its extension.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], VIII)
     A reaction: If the set was 'objects in the room next door', we would not be able to abstract from the objects, but we might get to the idea of things being contain in things, or the concept of an object, or a room. Wrong. That's because they are objects... Hm.
18. Thought / E. Abstraction / 8. Abstractionism Critique
Why should abstraction from two equipollent sets lead to the same set of 'pure units'? [Tait]
     Full Idea: Why should abstraction from two equipollent sets lead to the same set of 'pure units'?
     From: William W. Tait (Frege versus Cantor and Dedekind [1996])
     A reaction: [Tait is criticising Cantor] This expresses rather better than Frege or Dummett the central problem with the abstractionist view of how numbers are derived from matching groups of objects.
If abstraction produces power sets, their identity should imply identity of the originals [Tait]
     Full Idea: If the power |A| is obtained by abstraction from set A, then if A is equipollent to set B, then |A| = |B|. But this does not imply that A = B. So |A| cannot just be A, taken in abstraction, unless that can identify distinct sets, ..or create new objects.
     From: William W. Tait (Frege versus Cantor and Dedekind [1996], V)
     A reaction: An elegant piece of argument, which shows rather crucial facts about abstraction. We are then obliged to ask how abstraction can create an object or a set, if the central activity of abstraction is just ignoring certain features.
19. Language / C. Assigning Meanings / 2. Semantics
In 'situation semantics' our main concepts are abstracted from situations [Mares]
     Full Idea: In 'situation semantics' individuals, properties, facts, and events are treated as abstractions from situations.
     From: Edwin D. Mares (Negation [2014], 6.1)
     A reaction: [Barwise and Perry 1983 are cited] Since I take the process of abstraction to be basic to thought, I am delighted to learn that someone has developed a formal theory based on it. I am immediately sympathetic to situation semantics.
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics has a nice compositional account of modal statements [Mares]
     Full Idea: Possible worlds semantics is appealing because it gives a compositional analysis of the truth conditions of statements about necessity and possibility.
     From: Edwin D. Mares (A Priori [2011], 02.2)
     A reaction: Not sure I get this. Is the meaning composed by the gradual addition of worlds? If not, how is meaning composed in the normal way, from component words and phrases?
19. Language / D. Propositions / 3. Concrete Propositions
Unstructured propositions are sets of possible worlds; structured ones have components [Mares]
     Full Idea: An unstructured proposition is a set of possible worlds. ....Structured propositions contain entities that correspond to various parts of the sentences or thoughts that express them.
     From: Edwin D. Mares (A Priori [2011], 02.3)
     A reaction: I am definitely in favour of structured propositions. It strikes me as so obvious as to be not worth discussion - so I am obviously missing something here. Mares says structured propositions are 'more convenient'.
27. Natural Reality / C. Space / 3. Points in Space
Maybe space has points, but processes always need regions with a size [Mares]
     Full Idea: One theory is that space is made up of dimensionless points, but physical processes cannot take place in regions of less than a certain size.
     From: Edwin D. Mares (A Priori [2011], 06.7)
     A reaction: Thinkers in sympathy with verificationism presumably won't like this, and may prefer Feynman's view.