Combining Philosophers

All the ideas for Anaxarchus, Graham Priest and Rod Girle

unexpand these ideas     |    start again     |     specify just one area for these philosophers


53 ideas

2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
     Full Idea: Priest says there is room for contradictions. He gives the example of someone in a doorway; is he in or out of the room. Given that in and out are mutually exclusive and exhaustive, and neither is the default, he seems to be both in and not in.
     From: report of Graham Priest (What is so bad about Contradictions? [1998]) by Roy Sorensen - Vagueness and Contradiction 4.3
     A reaction: Priest is a clever lad, but I don't think I can go with this. It just seems to be an equivocation on the word 'in' when applied to rooms. First tell me the criteria for being 'in' a room. What is the proposition expressed in 'he is in the room'?
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
     Full Idea: Propositional logic can deal with negation, disjunction and conjunction of propositions, but predicate logic goes beyond it to deal with quantifiers, predicates and relations.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This is on the first page of an introduction to the next stage, which is to include modal notions like 'must' and 'possibly'.
There are three axiom schemas for propositional logic [Girle]
     Full Idea: The axioms of propositional logic are: A→(B→A); A→(B→C)→(A→B)→(A→C) ; and (¬A→¬B)→(B→A).
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
Proposition logic has definitions for its three operators: or, and, and identical [Girle]
     Full Idea: The operators of propositional logic are defined as follows: 'or' (v) is not-A implies B; 'and' (ampersand) is not A-implies-not-B; and 'identity' (three line equals) is A-implies-B and B-implies-A.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
     Full Idea: An axiom system for a logic contains three elements: a set of axioms; a set of inference rules; and definitions for proofs and theorems. There are also definitions for the derivation of conclusions from sets of premises.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
There are seven modalities in S4, each with its negation [Girle]
     Full Idea: In S4 there are fourteen modalities: no-operator; necessarily; possibly; necessarily-possibly; possibly-necessarily; necessarily-possibly-necessarily; and possibly-necessarily-possibly (each with its negation).
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: This is said to be 'more complex' than S5, but also 'weaker'.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
◊p → □◊p is the hallmark of S5 [Girle]
     Full Idea: The critical formula that distinguishes S5 from all others is: ◊p → □◊p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.3)
     A reaction: If it is possible that it is raining, then it is necessary that it is possible that it is raining. But if it is possible in this world, how can that possibility be necessary in all possible worlds?
S5 has just six modalities, and all strings can be reduced to those [Girle]
     Full Idea: In S5 there are six modalities: no-operator; necessarily; and possibly (and their negations). In any sequence of operators we may delete all but the last to gain an equivalent formula.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: Such drastic simplification seems attractive. Is there really no difference, though, between 'necessarily-possibly', 'possibly-possibly' and just 'possibly'? Could p be contingently possible in this world, and necessarily possible in another?
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Possible worlds logics use true-in-a-world rather than true [Girle]
     Full Idea: In possible worlds logics a statement is true-in-a-world rather than just true.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This sounds relativist, but I don't think it is. It is the facts which change, not the concept of truth. So 'donkeys can talk' may be true in a world, but not in the actual one.
Modal logic has four basic modal negation equivalences [Girle]
     Full Idea: The four important logical equivalences in modal logic (the Modal Negation equivalences) are: ¬◊p↔□¬p, ◊¬p↔¬□p, □p↔¬◊¬p, and ◊p↔¬□¬p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: [Possibly is written as a diamond, necessarily a square] These are parallel to a set of equivalences between quantifiers in predicate logic. They are called the four 'modal negation (MN) equivalences'.
Modal logics were studied in terms of axioms, but now possible worlds semantics is added [Girle]
     Full Idea: Modal logics were, for a long time, studied in terms of axiom systems. The advent of possible worlds semantics made it possible to study them in a semantic way as well.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
     Full Idea: Priest and Routley have developed paraconsistent relevant logic. 'Relevant' logics insist on there being some sort of connection between the premises and the conclusion of an argument. 'Paraconsistent' logics allow contradictions.
     From: report of Graham Priest (works [1998]) by Michčle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: Relevance blocks the move of saying that a falsehood implies everything, which sounds good. The offer of paraconsistency is very wicked indeed, and they are very naughty boys for even suggesting it.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
     Full Idea: Necessary implication is often called 'strict implication'. The sort of strict implication found in valid arguments, where the conjunction of the premises necessarily implies the conclusion, is often called 'entailment'.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: These are basic concept for all logic.
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
     Full Idea: The truth trees method for establishing the validity of arguments and formulas is easy to use, and has the advantage that if an argument or formula is not valid, then a counter-example can be retrieved from the tree.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.4)
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
     Full Idea: A natural principle is the same kind of paradox will have the same kind of solution. Standardly Ramsey's first group are solved by denying the existence of some totality, and the second group are less clear. But denial of the groups sink both.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §5)
     A reaction: [compressed] This sums up the argument of Priest's paper, which is that it is Ramsey's division into two kinds (see Idea 13334) which is preventing us from getting to grips with the paradoxes. Priest, notoriously, just lives with them.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
     Full Idea: König: there are indefinable ordinals, and the least indefinable ordinal has just been defined in that very phrase. (Recall that something is definable iff there is a (non-indexical) noun-phrase that refers to it).
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: Priest makes great subsequent use of this one, but it feels like a card trick. 'Everything indefinable has now been defined' (by the subject of this sentence)? König, of course, does manage to pick out one particular object.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
     Full Idea: Berry: if we take 'x is a natural number definable in less than 19 words', we can generate a number which is and is not one of these numbers.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [not enough space to spell this one out in full]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
     Full Idea: Richard: φ(x) is 'x is a definable real number between 0 and 1' and ψ(x) is 'x is definable'. We can define a real by diagonalization so that it is not in x. It is and isn't in the set of reals.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [this isn't fully clear here because it is compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
     Full Idea: Burali-Forti: φ(x) is 'x is an ordinal', and so w is the set of all ordinals, On; δ(x) is the least ordinal greater than every member of x (abbreviation: log(x)). The contradiction is that log(On)∈On and log(On)∉On.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
     Full Idea: Mirimanoff: φ(x) is 'x is well founded', so that w is the cumulative hierarchy of sets, V; &delta(x) is just the power set of x, P(x). If x⊆V, then V∈V and V∉V, since δ(V) is just V itself.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
     Full Idea: In the family of the Liar is the Knower Paradox, where φ(x) is 'x is known to be true', and there is a set of known things, Kn. By knowing a sentence is not in the known sentences, you know its truth.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [mostly my wording]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
     Full Idea: There are liar chains which fit the pattern of Transcendence and Closure, as can be seen with the simplest case of the Liar Pair.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [Priest gives full details] Priest's idea is that Closure is when a set is announced as complete, and Transcendence is when the set is forced to expand. He claims that the two keep coming into conflict.
10. Modality / A. Necessity / 3. Types of Necessity
Analytic truths are divided into logically and conceptually necessary [Girle]
     Full Idea: It has been customary to see analytic truths as dividing into the logically necessary and the conceptually necessary.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: I suspect that this neglected distinction is important in discussions of Quine's elimination of the analytic/synthetic distinction. Was Quine too influenced by what is logically necessary, which might shift with a change of axioms?
10. Modality / B. Possibility / 1. Possibility
Possibilities can be logical, theoretical, physical, economic or human [Girle]
     Full Idea: Qualified modalities seem to form a hierarchy, if we say that 'the possibility that there might be no hunger' is possible logically, theoretically, physically, economically, and humanly.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: Girle also mentions conceptual possibility. I take 'physically' to be the same as 'naturally'. I would take 'metaphysically' possible to equate to 'theoretically' rather than 'logically'. Almost anything might be logically possible, with bizarre logic.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A world has 'access' to a world it generates, which is important in possible worlds semantics [Girle]
     Full Idea: When one world generates another then it has 'access' to the world it generated. The accessibility relation between worlds is very important in possible worlds semantics.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.2)
     A reaction: This invites the obvious question what is meant by 'generates'.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1