Combining Philosophers

All the ideas for Anaxarchus, JC Beall / G Restall and Herbert B. Enderton

unexpand these ideas     |    start again     |     specify just one area for these philosophers


70 ideas

3. Truth / A. Truth Problems / 1. Truth
Some truths have true negations [Beall/Restall]
     Full Idea: Dialetheism is the view that some truths have true negations.
     From: JC Beall / G Restall (Logical Pluralism [2006], 7.4)
     A reaction: The important thing to remember is that they are truths. Thus 'Are you feeling happy?' might be answered 'Yes and no'.
3. Truth / B. Truthmakers / 5. What Makes Truths / b. Objects make truths
A truthmaker is an object which entails a sentence [Beall/Restall]
     Full Idea: The truthmaker thesis is that an object is a truthmaker for a sentence if and only if its existence entails the sentence.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.5.3)
     A reaction: The use of the word 'object' here is even odder than usual, and invites many questions. And the 'only if' seems peculiar, since all sorts of things can make a sentence true. 'There is someone in the house' for example.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'Equivocation' is when terms do not mean the same thing in premises and conclusion [Beall/Restall]
     Full Idea: 'Equivocation' is when the terms do not mean the same thing in the premises and in the conclusion.
     From: JC Beall / G Restall (Logical Consequence [2005], Intro)
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
(∀x)(A v B) |- (∀x)A v (∃x)B) is valid in classical logic but invalid intuitionistically [Beall/Restall]
     Full Idea: The inference of 'distribution' (∀x)(A v B) |- (∀x)A v (∃x)B) is valid in classical logic but invalid intuitionistically. It is straightforward to construct a 'stage' at which the LHS is true but the RHS is not.
     From: JC Beall / G Restall (Logical Pluralism [2006], 6.1.2)
     A reaction: This seems to parallel the iterative notion in set theory, that you must construct your hierarchy. All part of the general 'constructivist' approach to things. Is some kind of mad platonism the only alternative?
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
Excluded middle must be true for some situation, not for all situations [Beall/Restall]
     Full Idea: Relevant logic endorses excluded middle, ..but says instances of the law may fail. Bv¬B is true in every situation that settles the matter of B. It is necessary that there is some such situation.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.2)
     A reaction: See next idea for the unusual view of necessity on which this rests. It seems easier to assert something about all situations than just about 'some' situation.
It's 'relevantly' valid if all those situations make it true [Beall/Restall]
     Full Idea: The argument from P to A is 'relevantly' valid if and only if, for every situation in which each premise in P is true, so is A.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.2)
     A reaction: I like the idea that proper inference should have an element of relevance to it. A falsehood may allow all sorts of things, without actually implying them. 'Situations' sound promising here.
Relevant consequence says invalidity is the conclusion not being 'in' the premises [Beall/Restall]
     Full Idea: Relevant consequence says the conclusion of a relevantly invalid argument is not 'carried in' the premises - it does not follow from the premises.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.3.3)
     A reaction: I find this appealing. It need not invalidate classical logic. It is just a tougher criterion which is introduced when you want to do 'proper' reasoning, instead of just playing games with formal systems.
Relevant logic does not abandon classical logic [Beall/Restall]
     Full Idea: We have not abandoned classical logic in our acceptance of relevant logic.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.4)
     A reaction: It appears that classical logic is straightforwardly accepted, but there is a difference of opinion over when it is applicable.
A doesn't imply A - that would be circular [Beall/Restall]
     Full Idea: We could reject the inference from A to itself (on grounds of circularity).
     From: JC Beall / G Restall (Logical Pluralism [2006], 8)
     A reaction: [Martin-Meyer System] 'It's raining today'. 'Are you implying that it is raining today?' 'No, I'm SAYING it's raining today'. Logicians don't seem to understand the word 'implication'. Logic should capture how we reason. Nice proposal.
Relevant logic may reject transitivity [Beall/Restall]
     Full Idea: Some relevant logics reject transitivity, but we defend the classical view.
     From: JC Beall / G Restall (Logical Pluralism [2006], 8)
     A reaction: [they cite Neil Tennant for this view] To reject transitivity (A?B ? B?C ? A?C) certainly seems a long way from classical logic. But in everyday inference Tennant's idea seems good. The first premise may be irrelevant to the final conclusion.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic terms aren't existential; classical is non-empty, with referring names [Beall/Restall]
     Full Idea: A logic is 'free' to the degree it refrains from existential import of its singular and general terms. Classical logic must have non-empty domain, and each name must denote in the domain.
     From: JC Beall / G Restall (Logical Pluralism [2006], 7.1)
     A reaction: My intuition is that logic should have no ontology at all, so I like the sound of 'free' logic. We can't say 'Pegasus does not exist', and then reason about Pegasus just like any other horse.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
     Full Idea: A 'linear ordering' (or 'total ordering') on A is a binary relation R meeting two conditions: R is transitive (of xRy and yRz, the xRz), and R satisfies trichotomy (either xRy or x=y or yRx).
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:62)
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
     Full Idea: To know if A ∈ B, we look at the set A as a single object, and check if it is among B's members. But if we want to know whether A ⊆ B then we must open up set A and check whether its various members are among the members of B.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:04)
     A reaction: This idea is one of the key ideas to grasp if you are going to get the hang of set theory. John ∈ USA ∈ UN, but John is not a member of the UN, because he isn't a country. See Idea 12337 for a special case.
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
     Full Idea: The 'ordered pair' <x,y> is defined to be {{x}, {x,y}}; hence it can be proved that <u,v> = <x,y> iff u = x and v = y (given by Kuratowski in 1921). ...The definition is somewhat arbitrary, and others could be used.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:36)
     A reaction: This looks to me like one of those regular cases where the formal definitions capture all the logical behaviour of the concept that are required for inference, while failing to fully capture the concept for ordinary conversation.
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
     Full Idea: Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ. A man with an empty container is better off than a man with nothing.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1.03)
The empty set may look pointless, but many sets can be constructed from it [Enderton]
     Full Idea: It might be thought at first that the empty set would be a rather useless or even frivolous set to mention, but from the empty set by various set-theoretic operations a surprising array of sets will be constructed.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:02)
     A reaction: This nicely sums up the ontological commitments of mathematics - that we will accept absolutely anything, as long as we can have some fun with it. Sets are an abstraction from reality, and the empty set is the very idea of that abstraction.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
     Full Idea: Given any x we have the singleton {x}, which is defined by the pairing axiom to be {x,x}.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 2:19)
     A reaction: An interesting contrivance which is obviously aimed at keeping the axioms to a minimum. If you can do it intuitively with a new axiom, or unintuitively with an existing axiom - prefer the latter!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
     Full Idea: It was observed by several people that for a satisfactory theory of ordinal numbers, Zermelo's axioms required strengthening. The Axiom of Replacement was proposed by Fraenkel and others, giving rise to the Zermelo-Fraenkel (ZF) axioms.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
     Full Idea: For functions, we know that for any y there exists an appropriate x, but we can't yet form a function H, as we have no way of defining one particular choice of x. Hence we need the axiom of choice.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:48)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
Logic studies consequence; logical truths are consequences of everything, or nothing [Beall/Restall]
     Full Idea: Nowadays we think of the consequence relation itself as the primary subject of logic, and view logical truths as degenerate instances of this relation. Logical truths follow from any set of assumptions, or from no assumptions at all.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.2)
     A reaction: This seems exactly right; the alternative is the study of necessities, but that may not involve logic.
Syllogisms are only logic when they use variables, and not concrete terms [Beall/Restall]
     Full Idea: According to the Peripatetics (Aristotelians), only syllogistic laws stated in variables belong to logic, and not their applications to concrete terms.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.5)
     A reaction: [from Lukasiewicz] Seems wrong. I take it there are logical relations between concrete things, and the variables are merely used to describe these relations. Variables lack the internal powers to drive logical necessities. Variables lack essence!
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
The view of logic as knowing a body of truths looks out-of-date [Beall/Restall]
     Full Idea: Through much of the 20th century the conception of logic was inherited from Frege and Russell, as knowledge of a body of logical truths, as arithmetic or geometry was a knowledge of truths. This is odd, and a historical anomaly.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.2)
     A reaction: Interesting. I have always taken this idea to be false. I presume logic has minimal subject matter and truths, and preferably none at all.
5. Theory of Logic / A. Overview of Logic / 4. Pure Logic
Logic studies arguments, not formal languages; this involves interpretations [Beall/Restall]
     Full Idea: Logic does not study formal languages for their own sake, which is formal grammar. Logic evaluates arguments, and primarily considers formal languages as interpreted.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.1)
     A reaction: Hodges seems to think logic just studies formal languages. The current idea strikes me as a much more sensible view.
Formal logic is invariant under permutations, or devoid of content, or gives the norms for thought [Beall/Restall]
     Full Idea: Logic is purely formal either when it is invariant under permutation of object (Tarski), or when it has totally abstracted away from all contents, or it is the constitutive norms for thought.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: [compressed] The third account sounds rather woolly, and the second one sounds like a tricky operation, but the first one sounds clear and decisive, so I vote for Tarski.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
The model theory of classical predicate logic is mathematics [Beall/Restall]
     Full Idea: The model theory of classical predicate logic is mathematics if anything is.
     From: JC Beall / G Restall (Logical Pluralism [2006], 4.2.1)
     A reaction: This is an interesting contrast to the claim of logicism, that mathematics reduces to logic. This idea explains why students of logic are surprised to find themselves involved in mathematics.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
Logical consequence needs either proofs, or absence of counterexamples [Beall/Restall]
     Full Idea: Technical work on logical consequence has either focused on proofs, where validity is the existence of a proof of the conclusions from the premises, or on models, which focus on the absence of counterexamples.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
There are several different consequence relations [Beall/Restall]
     Full Idea: We are pluralists about logical consequence because we take there to be a number of different consequence relations, each reflecting different precisifications of the pre-theoretic notion of deductive logical consequence.
     From: JC Beall / G Restall (Logical Pluralism [2006], 8)
     A reaction: I don't see how you avoid the slippery slope that leads to daft logical rules like Prior's 'tonk' (from which you can infer anything you like). I say that nature imposes logical conquence on us - but don't ask me to prove it.
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Logical consequence is either necessary truth preservation, or preservation based on interpretation [Beall/Restall]
     Full Idea: Two different views of logical consequence are necessary truth-preservation (based on modelling possible worlds; favoured by Realists), or truth-preservation based on the meanings of the logical vocabulary (differing in various models; for Anti-Realists).
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
     A reaction: Thus Dummett prefers the second view, because the law of excluded middle is optional. My instincts are with the first one.
A sentence follows from others if they always model it [Beall/Restall]
     Full Idea: The sentence X follows logically from the sentences of the class K if and only if every model of the class K is also a model of the sentence X.
     From: JC Beall / G Restall (Logical Pluralism [2006], 3.2)
     A reaction: This why the symbol |= is often referred to as 'models'.
5. Theory of Logic / B. Logical Consequence / 8. Material Implication
A step is a 'material consequence' if we need contents as well as form [Beall/Restall]
     Full Idea: A logical step is a 'material consequence' and not a formal one, if we need the contents as well as the structure or form.
     From: JC Beall / G Restall (Logical Consequence [2005], 2)
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truth is much more important if mathematics rests on it, as logicism claims [Beall/Restall]
     Full Idea: If mathematical truth reduces to logical truth then it is important what counts as logically true, …but if logicism is not a going concern, then the body of purely logical truths will be less interesting.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.2)
     A reaction: Logicism would only be one motivation for pursuing logical truths. Maybe my new 'Necessitism' will derive the Peano Axioms from broad necessary truths, rather than from logic.
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
A 'logical truth' (or 'tautology', or 'theorem') follows from empty premises [Beall/Restall]
     Full Idea: If a conclusion follows from an empty collection of premises, it is true by logic alone, and is a 'logical truth' (sometimes a 'tautology'), or, in the proof-centred approach, 'theorems'.
     From: JC Beall / G Restall (Logical Consequence [2005], 4)
     A reaction: These truths are written as following from the empty set Φ. They are just implications derived from the axioms and the rules.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
Models are mathematical structures which interpret the non-logical primitives [Beall/Restall]
     Full Idea: Models are abstract mathematical structures that provide possible interpretations for each of the non-logical primitives in a formal language.
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / d. The Preface paradox
Preface Paradox affirms and denies the conjunction of propositions in the book [Beall/Restall]
     Full Idea: The Paradox of the Preface is an apology, that you are committed to each proposition in the book, but admit that collectively they probably contain a mistake. There is a contradiction, of affirming and denying the conjunction of propositions.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.4)
     A reaction: This seems similar to the Lottery Paradox - its inverse perhaps. Affirm all and then deny one, or deny all and then affirm one?
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
Hilbert proofs have simple rules and complex axioms, and natural deduction is the opposite [Beall/Restall]
     Full Idea: There are many proof-systems, the main being Hilbert proofs (with simple rules and complex axioms), or natural deduction systems (with few axioms and many rules, and the rules constitute the meaning of the connectives).
     From: JC Beall / G Restall (Logical Consequence [2005], 3)
10. Modality / A. Necessity / 3. Types of Necessity
Relevant necessity is always true for some situation (not all situations) [Beall/Restall]
     Full Idea: In relevant logic, the necessary truths are not those which are true in every situation; rather, they are those for which it is necessary that there is a situation making them true.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.2)
     A reaction: This seems to rest on the truthmaker view of such things, which I find quite attractive (despite Merricks's assault). Always ask what is making some truth necessary. This leads you to essences.
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
18. Thought / A. Modes of Thought / 6. Judgement / a. Nature of Judgement
Judgement is always predicating a property of a subject [Beall/Restall]
     Full Idea: All judgement, for Kant, is essentially the predication of some property to some subject.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.5)
     A reaction: Presumably the denial of a predicate could be a judgement, or the affirmation of ambiguous predicates?
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
We can rest truth-conditions on situations, rather than on possible worlds [Beall/Restall]
     Full Idea: Situation semantics is a variation of the truth-conditional approach, taking the salient unit of analysis not to be the possible world, or some complete consistent index, but rather the more modest 'situation'.
     From: JC Beall / G Restall (Logical Pluralism [2006], 5.5.4)
     A reaction: When I read Davidson (and implicitly Frege) this is what I always assumed was meant. The idea that worlds are meant has crept in to give truth conditions for modal statements. Hence situation semantics must cover modality.
19. Language / D. Propositions / 1. Propositions
Propositions commit to content, and not to any way of spelling it out [Beall/Restall]
     Full Idea: Our talk of propositions expresses commitment to the general notion of content, without a commitment to any particular way of spelling this out.
     From: JC Beall / G Restall (Logical Pluralism [2006], 2.1)
     A reaction: As a fan of propositions I like this. It leaves open the question of whether the content belongs to the mind or the language. Animals entertain propositions, say I.