Combining Philosophers

All the ideas for Anaxarchus, James Robert Brown and Laura Schroeter

unexpand these ideas     |    start again     |     specify just one area for these philosophers


53 ideas

2. Reason / D. Definition / 2. Aims of Definition
Definitions should be replaceable by primitives, and should not be creative [Brown,JR]
     Full Idea: The standard requirement of definitions involves 'eliminability' (any defined terms must be replaceable by primitives) and 'non-creativity' (proofs of theorems should not depend on the definition).
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: [He cites Russell and Whitehead as a source for this view] This is the austere view of the mathematician or logician. But almost every abstract concept that we use was actually defined in a creative way.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory says that natural numbers are an actual infinity (to accommodate their powerset) [Brown,JR]
     Full Idea: The set-theory account of infinity doesn't just say that we can keep on counting, but that the natural numbers are an actual infinite set. This is necessary to make sense of the powerset of ω, as the set of all its subsets, and thus even bigger.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: I don't personally find this to be sufficient reason to commit myself to the existence of actual infinities. In fact I have growing doubts about the whole role of set theory in philosophy of mathematics. Shows how much I know.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve set theory assumed that there is a set for every condition [Brown,JR]
     Full Idea: In the early versions of set theory ('naïve' set theory), the axiom of comprehension assumed that for any condition there is a set of objects satisfying that condition (so P(x)↔x∈{x:P(x)}), but this led directly to Russell's Paradox.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: How rarely any philosophers state this problem clearly (as Brown does here). This is incredibly important for our understanding of how we classify the world. I'm tempted to just ignore Russell, and treat sets in a natural and sensible way.
Nowadays conditions are only defined on existing sets [Brown,JR]
     Full Idea: In current set theory Russell's Paradox is avoided by saying that a condition can only be defined on already existing sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: A response to Idea 9613. This leaves us with no account of how sets are created, so we have the modern notion that absolutely any grouping of daft things is a perfectly good set. The logicians seem to have hijacked common sense.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The 'iterative' view says sets start with the empty set and build up [Brown,JR]
     Full Idea: The modern 'iterative' concept of a set starts with the empty set φ (or unsetted individuals), then uses set-forming operations (characterized by the axioms) to build up ever more complex sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The only sets in our system will be those we can construct, rather than anything accepted intuitively. It is more about building an elaborate machine that works than about giving a good model of reality.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
A flock of birds is not a set, because a set cannot go anywhere [Brown,JR]
     Full Idea: Neither a flock of birds nor a pack of wolves is strictly a set, since a flock can fly south, and a pack can be on the prowl, whereas sets go nowhere and menace no one.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: To say that the pack menaced you would presumably be to commit the fallacy of composition. Doesn't the number 64 have properties which its set-theoretic elements (whatever we decide they are) will lack?
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
If a proposition is false, then its negation is true [Brown,JR]
     Full Idea: The law of excluded middle says if a proposition is false, then its negation is true
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Surely that is the best statement of the law? How do you write that down? ¬(P)→¬P? No, because it is a semantic claim, not a syntactic claim, so a truth table captures it. Semantic claims are bigger than syntactic claims.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are either self-evident, or stipulations, or fallible attempts [Brown,JR]
     Full Idea: The three views one could adopt concerning axioms are that they are self-evident truths, or that they are arbitrary stipulations, or that they are fallible attempts to describe how things are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: Presumably modern platonists like the third version, with others choosing the second, and hardly anyone now having the confidence to embrace the first.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox finds a contradiction in the naming of huge numbers [Brown,JR]
     Full Idea: Berry's Paradox refers to 'the least integer not namable in fewer than nineteen syllables' - a paradox because it has just been named in eighteen syllables.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Apparently George Boolos used this quirky idea as a basis for a new and more streamlined proof of Gödel's Theorem. Don't tell me you don't find that impressive.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is the only place where we are sure we are right [Brown,JR]
     Full Idea: Mathematics seems to be the one and only place where we humans can be absolutely sure that we got it right.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Apart from death and taxes, that is. Personally I am more certain of the keyboard I am typing on than I am of Pythagoras's Theorem, but the experts seem pretty confident about the number stuff.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
'There are two apples' can be expressed logically, with no mention of numbers [Brown,JR]
     Full Idea: 'There are two apples' can be recast as 'x is an apple and y is an apple, and x isn't y, and if z is an apple it is the same as x or y', which makes no appeal at all to mathematics.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: He cites this as the basis of Hartry Field's claim that science can be done without numbers. The logic is ∃x∃y∀z(Ax&Ay&(x¬=y)&(Az→z=x∨z=y)).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / n. Pi
π is a 'transcendental' number, because it is not the solution of an equation [Brown,JR]
     Full Idea: The number π is not only irrational, but it is also (unlike √2) a 'transcendental' number, because it is not the solution of an algebraic equation.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: So is that a superficial property, or a profound one? Answers on a post card.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Mathematics represents the world through structurally similar models. [Brown,JR]
     Full Idea: Mathematics hooks onto the world by providing representations in the form of structurally similar models.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This is Brown's conclusion. It needs notions of mapping, one-to-one correspondence, and similarity. I like the idea of a 'model', as used in both logic and mathematics, and children's hobbies. The mind is a model-making machine.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
There is no limit to how many ways something can be proved in mathematics [Brown,JR]
     Full Idea: I'm tempted to say that mathematics is so rich that there are indefinitely many ways to prove anything - verbal/symbolic derivations and pictures are just two.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 9)
     A reaction: Brown has been defending pictures as a form of proof. I wonder how long his list would be, if we challenged him to give more details? Some people have very low standards of proof.
Computers played an essential role in proving the four-colour theorem of maps [Brown,JR]
     Full Idea: The celebrity of the famous proof in 1976 of the four-colour theorem of maps is that a computer played an essential role in the proof.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: The problem concerns the reliability of the computers, but then all the people who check a traditional proof might also be unreliable. Quis custodet custodies?
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set theory may represent all of mathematics, without actually being mathematics [Brown,JR]
     Full Idea: Maybe all of mathematics can be represented in set theory, but we should not think that mathematics is set theory. Functions can be represented as order pairs, but perhaps that is not what functions really are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: This seems to me to be the correct view of the situation. If 2 is represented as {φ,{φ}}, why is that asymmetrical? The first digit seems to be the senior and original partner, but how could the digits of 2 differ from one another?
When graphs are defined set-theoretically, that won't cover unlabelled graphs [Brown,JR]
     Full Idea: The basic definition of a graph can be given in set-theoretic terms,...but then what could an unlabelled graph be?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: An unlabelled graph will at least need a verbal description for it to have any significance at all. My daily mood-swings look like this....
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
To see a structure in something, we must already have the idea of the structure [Brown,JR]
     Full Idea: Epistemology is a big worry for structuralists. ..To conjecture that something has a particular structure, we must already have conceived of the idea of the structure itself; we cannot be discovering structures by conjecturing them.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This has to be a crucial area of discussion. Do we have our heads full of abstract structures before we look out of the window? Externalism about the mind is important here; mind and world are not utterly distinct things.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Sets seem basic to mathematics, but they don't suit structuralism [Brown,JR]
     Full Idea: Set theory is at the very heart of mathematics; it may even be all there is to mathematics. The notion of set, however, seems quite contrary to the spirit of structuralism.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: So much the worse for sets, I say. You can, for example, define ordinality in terms of sets, but that is no good if ordinality is basic to the nature of numbers, rather than a later addition.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
The irrationality of root-2 was achieved by intellect, not experience [Brown,JR]
     Full Idea: We could not discover irrational numbers by physical measurement. The discovery of the irrationality of the square root of two was an intellectual achievement, not at all connected to sense experience.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Brown declares himself a platonist, and this is clearly a key argument for him, and rather a good one. Hm. I'll get back to you on this one...
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
There is an infinity of mathematical objects, so they can't be physical [Brown,JR]
     Full Idea: A simple argument makes it clear that all mathematical arguments are abstract: there are infinitely many numbers, but only a finite number of physical entities, so most mathematical objects are non-physical. The best assumption is that they all are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This, it seems to me, is where constructivists score well (cf. Idea 9608). I don't have an infinity of bricks to build an infinity of houses, but I can imagine that the bricks just keep coming if I need them. Imagination is what is unbounded.
Numbers are not abstracted from particulars, because each number is a particular [Brown,JR]
     Full Idea: Numbers are not 'abstract' (in the old sense, of universals abstracted from particulars), since each of the integers is a unique individual, a particular, not a universal.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: An interesting observation which I have not seen directly stated before. Compare Idea 645. I suspect that numbers should be thought of as higher-order abstractions, which don't behave like normal universals (i.e. they're not distributed).
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Empiricists base numbers on objects, Platonists base them on properties [Brown,JR]
     Full Idea: Perhaps, instead of objects, numbers are associated with properties of objects. Basing them on objects is strongly empiricist and uses first-order logic, whereas the latter view is somewhat Platonistic, and uses second-order logic.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: I don't seem to have a view on this. You can count tomatoes, or you can count red objects, or even 'instances of red'. Numbers refer to whatever can be individuated. No individuation, no arithmetic. (It's also Hume v Armstrong on laws on nature).
6. Mathematics / C. Sources of Mathematics / 7. Formalism
For nomalists there are no numbers, only numerals [Brown,JR]
     Full Idea: For the instinctive nominalist in mathematics, there are no numbers, only numerals.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Maybe. A numeral is a specific sign, sometimes in a specific natural language, so this seems to miss the fact that cardinality etc are features of reality, not just conventions.
Does some mathematics depend entirely on notation? [Brown,JR]
     Full Idea: Are there mathematical properties which can only be discovered using a particular notation?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: If so, this would seem to be a serious difficulty for platonists. Brown has just been exploring the mathematical theory of knots.
The most brilliant formalist was Hilbert [Brown,JR]
     Full Idea: In mathematics, the most brilliant formalist of all was Hilbert
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: He seems to have developed his fully formalist views later in his career. See Mathematics|Basis of Mathematic|Formalism in our thematic section. Kreisel denies that Hilbert was a true formalist.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
There are no constructions for many highly desirable results in mathematics [Brown,JR]
     Full Idea: Constuctivists link truth with constructive proof, but necessarily lack constructions for many highly desirable results of classical mathematics, making their account of mathematical truth rather implausible.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The tricky word here is 'desirable', which is an odd criterion for mathematical truth. Nevertheless this sounds like a good objection. How flexible might the concept of a 'construction' be?
Constructivists say p has no value, if the value depends on Goldbach's Conjecture [Brown,JR]
     Full Idea: If we define p as '3 if Goldbach's Conjecture is true' and '5 if Goldbach's Conjecture is false', it seems that p must be a prime number, but, amazingly, constructivists would not accept this without a proof of Goldbach's Conjecture.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 8)
     A reaction: A very similar argument structure to Schrödinger's Cat. This seems (as Brown implies) to be a devastating knock-down argument, but I'll keep an open mind for now.
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
David's 'Napoleon' is about something concrete and something abstract [Brown,JR]
     Full Idea: David's painting of Napoleon (on a white horse) is a 'picture' of Napoleon, and a 'symbol' of leadership, courage, adventure. It manages to be about something concrete and something abstract.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 3)
     A reaction: This strikes me as the germ of an extremely important idea - that abstraction is involved in our perception of the concrete, so that they are not two entirely separate realms. Seeing 'as' involves abstraction.
10. Modality / A. Necessity / 3. Types of Necessity
Superficial necessity is true in all worlds; deep necessity is thus true, no matter which world is actual [Schroeter]
     Full Idea: If we have a 'fixedly' operator F, then a sentence is fixedly actually true if it is true no matter which world is designated as actual (which 'he actually won in 2008' fails to be). Maybe '□' is superficial necessity, and FA is 'deep' necessity.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.2.2)
     A reaction: Gareth Evans distinguishes 'deep' from 'superficial' necessity. Humberstone and others introduced 'F'. Presumably FA is deeper because it has to pass a tougher test.
10. Modality / D. Knowledge of Modality / 4. Conceivable as Possible / b. Conceivable but impossible
Contradictory claims about a necessary god both seem apriori coherent [Schroeter]
     Full Idea: It seems apriori coherent that there could be a necessarily existing god, and that there could be no such god - but they can't both be true. Other examples include unprovable mathematical necessities
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.3.4)
12. Knowledge Sources / A. A Priori Knowledge / 8. A Priori as Analytic
2D semantics gives us apriori knowledge of our own meanings [Schroeter]
     Full Idea: Generalized 2D semantics is meant to vindicate the traditional idea that we have apriori access to our own meanings through armchair reflection.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.1)
     A reaction: The idea is to split meaning in two, so that we know one part of it a priori. It is an unfashionably internalist view of meaning (which doesn't make it wrong!).
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
18. Thought / C. Content / 5. Twin Earth
Your view of water depends on whether you start from the actual Earth or its counterfactual Twin [Schroeter]
     Full Idea: Your verdicts about whether the stuff on Twin Earth counts as water depends on whether you think of Twin Earth as a hypothesis about your actual environment or as a purely counterfactual possibility.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.2.3)
     A reaction: This is the 'two-dimensional semantics' approach to the Twin Earth problem, which splits meaning into two components. Whether you start from the actual world or from Twin Earth, you will rigidly designate the local wet stuff as 'water'.
18. Thought / C. Content / 7. Narrow Content
Rationalists say knowing an expression is identifying its extension using an internal cognitive state [Schroeter]
     Full Idea: In rationalist views of meaning, based on the 'golden triangle', to be competent with an expression is to be in an internal cognitive state that puts one in a position to identify its extension in any possible world based only on apriori reflection.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.3.1)
     A reaction: This looks like a proper fight-back against modern rampant externalism about meaning. All my intuitions are with internalism, which I think points to a more coherent overall philosophy. Well done, David Chalmers! Even if he is wrong.
18. Thought / E. Abstraction / 1. Abstract Thought
'Abstract' nowadays means outside space and time, not concrete, not physical [Brown,JR]
     Full Idea: The current usage of 'abstract' simply means outside space and time, not concrete, not physical.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This is in contrast to Idea 9609 (the older notion of being abstracted). It seems odd that our ancestors had a theory about where such ideas came from, but modern thinkers have no theory at all. Blame Frege for that.
The older sense of 'abstract' is where 'redness' or 'group' is abstracted from particulars [Brown,JR]
     Full Idea: The older sense of 'abstract' applies to universals, where a universal like 'redness' is abstracted from red particulars; it is the one associated with the many. In mathematics, the notion of 'group' or 'vector space' perhaps fits this pattern.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: I am currently investigating whether this 'older' concept is in fact dead. It seems to me that it is needed, as part of cognitive science, and as the crucial link between a materialist metaphysic and the world of ideas.
19. Language / A. Nature of Meaning / 1. Meaning
Internalist meaning is about understanding; externalist meaning is about embedding in a situation [Schroeter]
     Full Idea: Internalists take the notion of meaning to capture an aspect of an individual's current state of understanding, while externalists take the notion of meaning to reflect how an individual is embedded within her social and physical environment.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.4.3)
     A reaction: This idea also occurs in discussions of concepts (filed here under 'Thought').
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
A term can have not only a sense and a reference, but also a 'computational role' [Brown,JR]
     Full Idea: In addition to the sense and reference of term, there is the 'computational' role. The name '2' has a sense (successor of 1) and a reference (the number 2). But the word 'two' has little computational power, Roman 'II' is better, and '2' is a marvel.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: Very interesting, and the point might transfer to natural languages. Synonymous terms carry with them not just different expressive powers, but the capacity to play different roles (e.g. slang and formal terms, gob and mouth).
19. Language / C. Assigning Meanings / 2. Semantics
Semantic theory assigns meanings to expressions, and metasemantics explains how this works [Schroeter]
     Full Idea: A semantic theory assigns semantic values (meanings) to particular expressions of the language. In contrast, a metasemantic theory explains why expressions have those semantic values, appealing to facts about speakers and communities.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 3.4)
     A reaction: Presumably some people only want the metasemantic version. I assume that the two are entangled, but I would vote for both.
19. Language / C. Assigning Meanings / 4. Compositionality
Semantic theories show how truth of sentences depends on rules for interpreting and joining their parts [Schroeter]
     Full Idea: Semantic theories explain how the truth or falsity of whole sentences depends on the meanings of their parts by stating rules governing the interpretation of subsentential expressions and their modes of combination.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.1.1)
     A reaction: Somehow it looks as if the mystery of the whole business will still be missing if this project is ever successfully completed. Also one suspects that such a theory would be a fiction, rather than a description of actuality, which is too complex.
19. Language / C. Assigning Meanings / 7. Extensional Semantics
Simple semantics assigns extensions to names and to predicates [Schroeter]
     Full Idea: The simplest semantic frameworks assign extensions as semantic values of particular expressions. The extension of a name is the thing, of 'cool' is the set of cool things, and sets of ordered pairs for 2-place predicates. The sentence has T or F.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.1.1)
     A reaction: The immediate well-known problem is different predicates with the same extensions, such as 'renate' and 'cordate'. Possible worlds semantics is supposed to be an improvement to cover this, and to give a semantics for modal talk as well. Sounds good.
'Federer' and 'best tennis player' can't mean the same, despite having the same extension [Schroeter]
     Full Idea: A simple extensional semantics will assign the same semantic value to 'Roger Federer' and 'world's best tennis player', but they clearly differ in meaning, and if events had unfolded differently they would pick out different people.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.1.1)
     A reaction: You would think that this would be too obvious to need pointing out, but it is clearly a view that had a lot of popularity before the arrival of possible worlds.
19. Language / C. Assigning Meanings / 8. Possible Worlds Semantics
Possible worlds semantics uses 'intensions' - functions which assign extensions at each world [Schroeter]
     Full Idea: In standard possible worlds semantics, the semantic value of an expression is an 'intension', a function that assigns an extension to the expression 'at' every possible world. ...It keeps track of the 'modal profiles' of objects, kinds and properties.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.1.1)
     A reaction: Personally I just don't buy a semantics which is entirely based on extensions, even if this has sorted out some more obvious problems of extensionality. When I say someone is 'my hero', I don't just mean to pick out a particular person.
Possible worlds make 'I' and that person's name synonymous, but they have different meanings [Schroeter]
     Full Idea: In standard possible worlds semantics the semantic value of Hllary Clinton's utterance of 'I' will be the same as her utterance of 'Hillary Clinton'. But clearly the English word 'I' is not synonymous with the name 'Hillary Clinton'.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.1.1)
     A reaction: This problem was spotted by Kaplan, and it has been a chief motivator for the creation of two-dimensional semantics, which some people have then extended into a complete semantic theory. No purely extensional semantics can be right.
Possible worlds semantics implies a constitutive connection between meanings and modal claims [Schroeter]
     Full Idea: In standard possible world semantics an expression's intension reflects the modal profile of an object, kind or property, which would establish an important constitutive connection between meanings and modal claims.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.3.1)
     A reaction: The central question becomes 'do you need to know a thing's modal profile in order to have a decent understanding of it?', but if you express it that way (my way), then what counts as 'decent' will be relative to all sorts of things.
In the possible worlds account all necessary truths are same (because they all map to the True) [Schroeter]
     Full Idea: A problem for a standard possible worlds analysis is that all necessary truths have precisely the same content (the function mapping every world to the True). Hesperus=Phosphorus has the same content as Hesperus=Hesperus-and-2+2=4.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 3.3)
     A reaction: If this is supposed to be a theory of meaning then it has gone very badly wrong indeed. Has modern semantics taken a wrong turning somewhere? Two-dimensionalism is meant to address some of these problems.
19. Language / C. Assigning Meanings / 10. Two-Dimensional Semantics
Array worlds along the horizontal, and contexts (world,person,time) along the vertical [Schroeter]
     Full Idea: In a two-dimensional matrix we array possible circumstances of evaluation (worlds) along the horizontal axis, and possible contexts of utterance (world, person, time) along the vertical axis.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.1.2)
     A reaction: This is due to Stalnaker 1978, and is clearest in operation when applied to an indexical such as 'I' in 'I am President'. 'I' is a rigid designator, but depends on context. The grid is filled in with T or F for each utterance in each world.
If we introduce 'actually' into modal talk, we need possible worlds twice to express this [Schroeter]
     Full Idea: At first glance necessity and possibility can be fully expressed by quantifying over all possible worlds, but this cannot capture 'Possibly everything actually red is also shiny'. This needs a double-indexed framework, with worlds playing two roles.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 1.2.1)
     A reaction: She points out that this also applies to tense logic, for the notion of 'now'. The point is that we not only need a set of possible worlds, but we also need a procedure (the 'Actuality' operator A or @) for picking out one of the worlds as special.
Do we know apriori how we refer to names and natural kinds, but their modal profiles only a posteriori? [Schroeter]
     Full Idea: Perhaps our best way of understanding names and natural kind terms is that we have apriori access to currently associated reference-fixing criterion, but only a posteriori access to the associated modal profile.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.1)
     A reaction: This is the 'generalized' view of 2D semantics (covering everything, not just modals and indexicals). I know apriori what something is, but only study will reveal its possibilities. The actual world is easy to talk about, but possible worlds are harder.
2D fans defend it for conceptual analysis, for meaning, and for internalist reference [Schroeter]
     Full Idea: Supporters of generalized two-dimensional semantics agree to defend apriori conceptual analysis in metaphysics, and that 2D captures meaning and not just belief-patterns, and it gives a broadly internalist approach to reference determination.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.3.4)
     A reaction: I'm not sure I can evaluate this, but I sort of like conceptual analysis, and the concept of meaning, and fairly internalist views of reference, so I am ripe for the picking.
2D semantics can't respond to contingent apriori claims, since there is no single proposition involved [Schroeter]
     Full Idea: It is objected to 2D semantics that it cannot explain Kripke's cases of contingent apriori truths, for there is no single proposition (construed as a set of possible worlds) that is both apriori and contingent.
     From: Laura Schroeter (Two-Dimensional Semantics [2010], 2.4.2)
     A reaction: This sounds like a rather large objection to the whole 2D plan, if it implies that when we say something there is no single proposition that is being expressed.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Given atomism at one end, and a finite universe at the other, there are no physical infinities [Brown,JR]
     Full Idea: There seem to be no actual infinites in the physical realm. Given the correctness of atomism, there are no infinitely small things, no infinite divisibility. And General Relativity says that the universe is only finitely large.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: If time was infinite, you could travel round in a circle forever. An atom has size, so it has a left, middle and right to it. Etc. They seem to be physical, so we will count those too.