Combining Philosophers

All the ideas for Anaxarchus, Julia Driver and Frank Close

unexpand these ideas     |    start again     |     specify just one area for these philosophers


25 ideas

13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
20. Action / B. Preliminaries of Action / 1. Intention to Act / a. Nature of intentions
Motives produce intentions, which lead to actions [Driver]
     Full Idea: Motives will cause persons for form intentions; it is intentions which more directly guide actions.
     From: Julia Driver (The Virtues and Human Nature [1996], 3)
     A reaction: This is invites the question of whether there is a sharp distinction between the motive and the action. Detectives look for motives, but law courts look for intentions.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / a. Nature of virtue
Good intentions are not necessary for virtue [Driver]
     Full Idea: I deny the claim that good intentions are necessary for virtue.
     From: Julia Driver (The Virtues and Human Nature [1996], 3)
     A reaction: Presumably one could continually do the right thing, because it was your duty or your job, without actually being well motivated for it.
Virtue should be defined by consequences, not by states of mind [Driver]
     Full Idea: The behavioural aspects of virtue are more important than its phenomenology, because virtue is best defined along consequentialist lines.
     From: Julia Driver (The Virtues and Human Nature [1996], Intro)
     A reaction: This is the thesis of her paper. Quite persuasive. Consequences are, of course, important in all moral theories (even Kant's). She doesn't rely on human nature. The social virtues vary according to the circumstances, such as gossiping in wartime.
Virtues are character traits or dispositions which produce good consequences for others [Driver]
     Full Idea: A moral virtue is a character trait (a disposition or cluster of dispositions) which, generally speaking, produces good consequences for others.
     From: Julia Driver (The Virtues and Human Nature [1996], 3)
     A reaction: There are self-directed virtues, such as keeping fit and healthy. There are virtues for ways to receive the kindness of others. That said, I like this idea.
Control of pregnancy and knowledge of paternity have downgraded chastity [Driver]
     Full Idea: Women now have more control over becoming pregnant. Men can now be more certain of paternity, without the constraint of female chastity. Hence chastity is no longer considered a moral virtue.
     From: Julia Driver (The Virtues and Human Nature [1996], 5)
     A reaction: A persuasive argument that virtues are defined by their consequences (to which I add my example of gossiping in wartime). Different social situations and crises promote or relegate the status of certain virtues (such as food hoarding).
23. Ethics / C. Virtue Theory / 3. Virtues / a. Virtues
If generosity systematically turned recipients into parasites, it wouldn't be a virtue [Driver]
     Full Idea: If generosity towards the needy in the long run produced [social] parasites, and if generosity did this systematically, then it would not be a moral virtue.
     From: Julia Driver (The Virtues and Human Nature [1996], 5)
     A reaction: A very persuasive example. Hume has similar views - that we encourage those emotions which have good social outcomes.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / b. Heat
Work degrades into heat, but not vice versa [Close]
     Full Idea: William Thomson, Lord Kelvin, declared (in 1865) the second law of thermodynamics: mechanical work inevitably tends to degrade into heat, but not vice versa.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: The basis of entropy, which makes time an essential part of physics. Might this be the single most important fact about the physical world?
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
First Law: energy can change form, but is conserved overall [Close]
     Full Idea: The first law of thermodynamics : energy can be changed from one form to another, but is always conserved overall.
     From: Frank Close (Theories of Everything [2017], 3 'Perpetual')
     A reaction: So we have no idea what energy is, but we know it's conserved. (Daniel Bernoulli showed the greater the mean energy, the higher the temperature. James Joule showed the quantitative equivalence of heat and work p.26-7)
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / d. Entropy
Third Law: total order and minimum entropy only occurs at absolute zero [Close]
     Full Idea: The third law of thermodynamics says that a hypothetical state of total order and minimum entropy can be attained only at the absolute zero temperature, minus 273 degrees Celsius.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: If temperature is energetic movement of atoms (or whatever), then obviously zero movement is the coldest it can get. So is absolute zero an energy state, or an absence of energy? I have no idea what 'total order' means.
27. Natural Reality / B. Modern Physics / 1. Relativity / a. Special relativity
All motions are relative and ambiguous, but acceleration is the same in all inertial frames [Close]
     Full Idea: There is no absolute state of rest; only relative motions are unambiguous. Contrast this with acceleration, however, which has the same magnitude in all inertial frames.
     From: Frank Close (Theories of Everything [2017], 3 'Newton's')
     A reaction: It seems important to remember this, before we start trumpeting about the whole of physics being relative. ....But see Idea 20634!
The electric and magnetic are tightly linked, and viewed according to your own motion [Close]
     Full Idea: Electric and magnetic phenomena are profoundly intertwined; what you interpret as electric or magnetic thus depends on your own motion.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like an earlier version of special relativity.
27. Natural Reality / B. Modern Physics / 1. Relativity / b. General relativity
The general relativity equations relate curvature in space-time to density of energy-momentum [Close]
     Full Idea: The essence of general relativity relates 'curvature in space-time' on one side of the equation to the 'density of momentum and energy' on the other. ...In full, Einstein required ten equations of this type.
     From: Frank Close (Theories of Everything [2017], 5 'Gravity')
     A reaction: Momentum involves mass, and energy is equivalent to mass (e=mc^2).
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Electric fields have four basic laws (two by Gauss, one by Ampère, one by Faraday) [Close]
     Full Idea: Four basic laws of electric and magnetic fields: Gauss's Law (about the flux produced by a field), Gauss's law of magnets (there can be no monopoles), Ampère's Law (fields on surfaces), and Farday's Law (accelerated magnets produce fields).
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: [Highly compressed, for an overview. Close explains them]
Light isn't just emitted in quanta called photons - light is photons [Close]
     Full Idea: Planck had assumed that light is emitted in quanta called photons. Einstein went further - light is photons.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: The point is that light travels as entities which are photons, rather than the emissions being quantized packets of some other stuff.
In general relativity the energy and momentum of photons subjects them to gravity [Close]
     Full Idea: In Einstein's general theory, gravity acts also on energy and momentum, not simply on mass. For example, massless photons of light feel the gravitational attraction of the Sun and can be deflected.
     From: Frank Close (Theories of Everything [2017], 5 'Planck')
     A reaction: Ah, a puzzle solved. How come massless photons are bent by gravity?
Electro-magnetic waves travel at light speed - so light is electromagnetism! [Close]
     Full Idea: Faradays' measurements predicted the speed of electro-magnetic waves, which happened to be the speed of light, so Maxwell made an inspired leap: light is an electromagnetic wave!
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Put that way, it doesn't sound like an 'inspired' leap, because travelling at exactly the same speed seems a pretty good indication that they are the same sort of thing. (But I'm not denying that Maxwell was a special guy!)
In QED, electro-magnetism exists in quantum states, emitting and absorbing electrons [Close]
     Full Idea: Dirac created quantum electrodynamics (QED): the universal electro-magnetic field can exist in discreet states of energy (with photons appearing and disappearing by energy excitations. This combined classical ideas, quantum theory and special relativity.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: Close says this is the theory of everything in atomic structure, but not in nuclei (which needs QCD and QFD). So if there are lots of other 'fields' (e.g. gravitational, weak, strong, Higgs), how do they all fit together? Do they talk to one another?
Photon exchange drives the electro-magnetic force [Close]
     Full Idea: The exchange of photons drives the electro-magnetic force.
     From: Frank Close (Theories of Everything [2017], 6 'Superstrings')
     A reaction: So light, which we just think of as what is visible, is a mere side-effect of the engine room of nature - the core mechanism of the whole electro-magnetic field.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
Quantum fields contain continual rapid creation and disappearance [Close]
     Full Idea: Quantum field theory implies that the vacuum of space is filled with particles and antiparticles which bubble in and out of existence on faster and faster timescales over shorter and shorter distances.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: Ponder this sentence until you head aches. Existence, but not as we know it, Jim. Close says calculations in QED about the electron confirm this.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Dirac showed how electrons conform to special relativity [Close]
     Full Idea: In 1928 Paul Dirac discovered the quantum equation that describes the electron and conforms to the requirements special relativity theory.
     From: Frank Close (Theories of Everything [2017], 3 'Light!')
     A reaction: This sounds like a major step in the unification of physics. Quantum theory and General relativity remain irreconcilable.
Electrons get their mass by interaction with the Higgs field [Close]
     Full Idea: The electron gets its mass by interaction with the ubiquitous Higgs field.
     From: Frank Close (Theories of Everything [2017], 6 'Hierarchy')
     A reaction: I thought I understood mass until I read this. Is it just wrong to say the mass of a table is the 'amount of stuff' in it?
27. Natural Reality / B. Modern Physics / 4. Standard Model / a. Concept of matter
Modern theories of matter are grounded in heat, work and energy [Close]
     Full Idea: The link between temperature, heat, work and energy is at the root of our historical ability to construct theories of matter, such as Newton's dynamics, while ignoring, and indeed being ignorant of - atomic dimensions.
     From: Frank Close (Theories of Everything [2017], 3 'Arrow')
     A reaction: That is, presumably, that even when you fill in the atoms, and the standard model of physics, these aspects of matter do the main explaiining (of the behaviour, rather than of the structure).
27. Natural Reality / B. Modern Physics / 5. Unified Models / a. Electro-weak unity
The Higgs field is an electroweak plasma - but we don't know what stuff it consists of [Close]
     Full Idea: In 2012 it was confirmed that we are immersed in an electroweak plasma - the Higgs field. We curently have no knowledge of what this stuff might consist of.
     From: Frank Close (Theories of Everything [2017], 4 'Higgs')
     A reaction: The second sentence has my full attention. So we don't understand a field properly until we understand the 'stuff' it is made of? So what are all the familiar fields made of? Tell me more!
27. Natural Reality / C. Space / 6. Space-Time
Space-time is indeterminate foam over short distances [Close]
     Full Idea: At very short distances, space-time itself becomes some indeterminate foam.
     From: Frank Close (Theories of Everything [2017], 6 'Intro')
     A reaction: [see Close for a bit more detail of this weird idea]