Combining Philosophers

All the ideas for Anaxarchus, Laurence Bonjour and David Bostock

unexpand these ideas     |    start again     |     specify just one area for these philosophers


163 ideas

1. Philosophy / D. Nature of Philosophy / 1. Philosophy
Philosophy is a priori if it is anything [Bonjour]
     Full Idea: My conviction is that philosophy is a priori if it is anything.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], Pref)
     A reaction: How about knowledge of a posteriori necessities, such as the length of a metre, known by observation of the standard metre in Paris?
2. Reason / A. Nature of Reason / 3. Pure Reason
Perceiving necessary connections is the essence of reasoning [Bonjour]
     Full Idea: If one never in fact grasps any necessary connections between anything, it is hard to see what reasoning could possible amount to.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §4.3)
2. Reason / A. Nature of Reason / 6. Coherence
Coherence can't be validated by appeal to coherence [Bonjour]
     Full Idea: The epistemic authority of coherence cannot itself be established by appeal to coherence.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §3.7 n50)
     A reaction: The standard approach amongs modern philosophers (following, I think, Kripke) is to insist on 'intuition' as basic, despite all its problems. I have no better suggestion.
For any given area, there seem to be a huge number of possible coherent systems of beliefs [Bonjour]
     Full Idea: The 2nd standard objection to coherence is 'alternative coherent systems' - that there will be indefinitely many possible systems of belief in relation to any given subject area, each as internally coherent as the others.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 3.2)
     A reaction: This seems to imply that you could just invent an explanation, as long as it was coherent, but presumably good coherence is highly sensitive to the actual evidence. Bonjour observes that many of these systems would not survive over time.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions are wrong, because they change the set that is being defined? [Bostock]
     Full Idea: Poincaré suggested that what is wrong with an impredicative definition is that it allows the set defined to alter its composition as more sets are added to the theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
Venn Diagrams map three predicates into eight compartments, then look for the conclusion [Bostock]
     Full Idea: Venn Diagrams are a traditional method to test validity of syllogisms. There are three interlocking circles, one for each predicate, thus dividing the universe into eight possible basic elementary quantifications. Is the conclusion in a compartment?
     From: David Bostock (Intermediate Logic [1997], 3.8)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / b. Terminology of PL
'Conjunctive Normal Form' is ensuring that no disjunction has a conjunction within its scope [Bostock]
     Full Idea: 'Conjunctive Normal Form' (CNF) is rearranging the occurrences of ∧ and ∨ so that no disjunction sign has any conjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
'Disjunctive Normal Form' is ensuring that no conjunction has a disjunction within its scope [Bostock]
     Full Idea: 'Disjunctive Normal Form' (DNF) is rearranging the occurrences of ∧ and ∨ so that no conjunction sign has any disjunction in its scope. This is achieved by applying two of the distribution laws.
     From: David Bostock (Intermediate Logic [1997], 2.6)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / d. Basic theorems of PL
'Disjunction' says that Γ,φ∨ψ|= iff Γ,φ|= and Γ,ψ|= [Bostock]
     Full Idea: The Principle of Disjunction says that Γ,φ∨ψ |= iff Γ,φ |= and Γ,ψ |=.
     From: David Bostock (Intermediate Logic [1997], 2.5.G)
     A reaction: That is, a disjunction leads to a contradiction if they each separately lead to contradictions.
The 'conditional' is that Γ|=φ→ψ iff Γ,φ|=ψ [Bostock]
     Full Idea: The Conditional Principle says that Γ |= φ→ψ iff Γ,φ |= ψ. With the addition of negation, this implies φ,φ→ψ |= ψ, which is 'modus ponens'.
     From: David Bostock (Intermediate Logic [1997], 2.5.H)
     A reaction: [Second half is in Ex. 2.5.4]
'Assumptions' says that a formula entails itself (φ|=φ) [Bostock]
     Full Idea: The Principle of Assumptions says that any formula entails itself, i.e. φ |= φ. The principle depends just upon the fact that no interpretation assigns both T and F to the same formula.
     From: David Bostock (Intermediate Logic [1997], 2.5.A)
     A reaction: Thus one can introduce φ |= φ into any proof, and then use it to build more complex sequents needed to attain a particular target formula. Bostock's principle is more general than anything in Lemmon.
'Thinning' allows that if premisses entail a conclusion, then adding further premisses makes no difference [Bostock]
     Full Idea: The Principle of Thinning says that if a set of premisses entails a conclusion, then adding further premisses will still entail the conclusion. It is 'thinning' because it makes a weaker claim. If γ|=φ then γ,ψ|= φ.
     From: David Bostock (Intermediate Logic [1997], 2.5.B)
     A reaction: It is also called 'premise-packing'. It is the characteristic of a 'monotonic' logic - where once something is proved, it stays proved, whatever else is introduced.
'Cutting' allows that if x is proved, and adding y then proves z, you can go straight to z [Bostock]
     Full Idea: The Principle of Cutting is the general point that entailment is transitive, extending this to cover entailments with more than one premiss. Thus if γ |= φ and φ,Δ |= ψ then γ,Δ |= ψ. Here φ has been 'cut out'.
     From: David Bostock (Intermediate Logic [1997], 2.5.C)
     A reaction: It might be called the Principle of Shortcutting, since you can get straight to the last conclusion, eliminating the intermediate step.
'Negation' says that Γ,¬φ|= iff Γ|=φ [Bostock]
     Full Idea: The Principle of Negation says that Γ,¬φ |= iff Γ |= φ. We also say that φ,¬φ |=, and hence by 'thinning on the right' that φ,¬φ |= ψ, which is 'ex falso quodlibet'.
     From: David Bostock (Intermediate Logic [1997], 2.5.E)
     A reaction: That is, roughly, if the formula gives consistency, the negation gives contradiction. 'Ex falso' says that anything will follow from a contradiction.
'Conjunction' says that Γ|=φ∧ψ iff Γ|=φ and Γ|=ψ [Bostock]
     Full Idea: The Principle of Conjunction says that Γ |= φ∧ψ iff Γ |= φ and Γ |= ψ. This implies φ,ψ |= φ∧ψ, which is ∧-introduction. It is also implies ∧-elimination.
     From: David Bostock (Intermediate Logic [1997], 2.5.F)
     A reaction: [Second half is Ex. 2.5.3] That is, if they are entailed separately, they are entailed as a unit. It is a moot point whether these principles are theorems of propositional logic, or derivation rules.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
A logic with ¬ and → needs three axiom-schemas and one rule as foundation [Bostock]
     Full Idea: For ¬,→ Schemas: (A1) |-φ→(ψ→φ), (A2) |-(φ→(ψ→ξ)) → ((φ→ψ)→(φ→ξ)), (A3) |-(¬φ→¬ψ) → (ψ→φ), Rule:DET:|-φ,|-φ→ψ then |-ψ
     From: David Bostock (Intermediate Logic [1997], 5.2)
     A reaction: A1 says everything implies a truth, A2 is conditional proof, and A3 is contraposition. DET is modus ponens. This is Bostock's compact near-minimal axiom system for proposition logic. He adds two axioms and another rule for predicate logic.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Classical interdefinitions of logical constants and quantifiers is impossible in intuitionism [Bostock]
     Full Idea: None of the classical ways of defining one logical constant in terms of others is available in intuitionist logic (and this includes the two quantifiers).
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
A 'free' logic can have empty names, and a 'universally free' logic can have empty domains [Bostock]
     Full Idea: A 'free' logic is one in which names are permitted to be empty. A 'universally free' logic is one in which the domain of an interpretation may also be empty.
     From: David Bostock (Intermediate Logic [1997], 8.6)
4. Formal Logic / F. Set Theory ST / 1. Set Theory
There is no single agreed structure for set theory [Bostock]
     Full Idea: There is so far no agreed set of axioms for set theory which is categorical, i.e. which does pick just one structure.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: This contrasts with Peano Arithmetic, which is categorical in its second-order version.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
A 'proper class' cannot be a member of anything [Bostock]
     Full Idea: A 'proper class' cannot be a member of anything, neither of a set nor of another proper class.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
We could add axioms to make sets either as small or as large as possible [Bostock]
     Full Idea: We could add the axiom that all sets are constructible (V = L), making the universe of sets as small as possible, or add the axiom that there is a supercompact cardinal (SC), making the universe as large as we no know how to.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: Bostock says most mathematicians reject the first option, and are undecided about the second option.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice relies on reference to sets that we are unable to describe [Bostock]
     Full Idea: The usual accounts of ZF are not restricted to subsets that we can describe, and that is what justifies the axiom of choice.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4 n36)
     A reaction: This contrasts interestingly with predicativism, which says we can only discuss things which we can describe or define. Something like verificationism hovers in the background.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Replacement enforces a 'limitation of size' test for the existence of sets [Bostock]
     Full Idea: The Axiom of Replacement (or the Axiom of Subsets, 'Aussonderung', Fraenkel 1922) in effect enforces the idea that 'limitation of size' is a crucial factor when deciding whether a proposed set or does not not exist.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
First-order logic is not decidable: there is no test of whether any formula is valid [Bostock]
     Full Idea: First-order logic is not decidable. That is, there is no test which can be applied to any arbitrary formula of that logic and which will tell one whether the formula is or is not valid (as proved by Church in 1936).
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
The completeness of first-order logic implies its compactness [Bostock]
     Full Idea: From the fact that the usual rules for first-level logic are complete (as proved by Gödel 1930), it follows that this logic is 'compact'.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
     A reaction: The point is that the completeness requires finite proofs.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Elementary logic cannot distinguish clearly between the finite and the infinite [Bostock]
     Full Idea: In very general terms, we cannot express the distinction between what is finite and what is infinite without moving essentially beyond the resources available in elementary logic.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: This observation concludes a discussion of Compactness in logic.
Truth is the basic notion in classical logic [Bostock]
     Full Idea: The most fundamental notion in classical logic is that of truth.
     From: David Bostock (Intermediate Logic [1997], 1.1)
     A reaction: The opening sentence of his book. Hence the first half of the book is about semantics, and only the second half deals with proof. Compare Idea 10282. The thought seems to be that you could leave out truth, but that makes logic pointless.
Fictional characters wreck elementary logic, as they have contradictions and no excluded middle [Bostock]
     Full Idea: Discourse about fictional characters leads to a breakdown of elementary logic. We accept P or ¬P if the relevant story says so, but P∨¬P will not be true if the relevant story says nothing either way, and P∧¬P is true if the story is inconsistent.
     From: David Bostock (Intermediate Logic [1997], 8.5)
     A reaction: I really like this. Does one need to invent a completely new logic for fictional characters? Or must their logic be intuitionist, or paraconsistent, or both?
5. Theory of Logic / B. Logical Consequence / 3. Deductive Consequence |-
The syntactic turnstile |- φ means 'there is a proof of φ' or 'φ is a theorem' [Bostock]
     Full Idea: The syntactic turnstile |- φ means 'There is a proof of φ' (in the system currently being considered). Another way of saying the same thing is 'φ is a theorem'.
     From: David Bostock (Intermediate Logic [1997], 5.1)
5. Theory of Logic / B. Logical Consequence / 4. Semantic Consequence |=
Γ|=φ is 'entails'; Γ|= is 'is inconsistent'; |=φ is 'valid' [Bostock]
     Full Idea: If we write Γ |= φ, with one formula to the right, then the turnstile abbreviates 'entails'. For a sequent of the form Γ |= it can be read as 'is inconsistent'. For |= φ we read it as 'valid'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
Validity is a conclusion following for premises, even if there is no proof [Bostock]
     Full Idea: The classical definition of validity counts an argument as valid if and only if the conclusion does in fact follow from the premises, whether or not the argument contains any demonstration of this fact.
     From: David Bostock (Intermediate Logic [1997], 1.2)
     A reaction: Hence validity is given by |= rather than by |-. A common example is 'it is red so it is coloured', which seems true but beyond proof. In the absence of formal proof, you wonder whether validity is merely a psychological notion.
It seems more natural to express |= as 'therefore', rather than 'entails' [Bostock]
     Full Idea: In practice we avoid quotation marks and explicitly set-theoretic notation that explaining |= as 'entails' appears to demand. Hence it seems more natural to explain |= as simply representing the word 'therefore'.
     From: David Bostock (Intermediate Logic [1997], 1.3)
     A reaction: Not sure I quite understand that, but I have trained myself to say 'therefore' for the generic use of |=. In other consequences it seems better to read it as 'semantic consequence', to distinguish it from |-.
5. Theory of Logic / B. Logical Consequence / 5. Modus Ponens
MPP: 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ' (omit Γs for Detachment) [Bostock]
     Full Idea: The Rule of Detachment is a version of Modus Ponens, and says 'If |=φ and |=φ→ψ then |=ψ'. This has no assumptions. Modus Ponens is the more general rule that 'If Γ|=φ and Γ|=φ→ψ then Γ|=ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: Modus Ponens is actually designed for use in proof based on assumptions (which isn't always the case). In Detachment the formulae are just valid, without dependence on assumptions to support them.
MPP is a converse of Deduction: If Γ |- φ→ψ then Γ,φ|-ψ [Bostock]
     Full Idea: Modus Ponens is equivalent to the converse of the Deduction Theorem, namely 'If Γ |- φ→ψ then Γ,φ|-ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. See 13614 for Modus Ponens.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
The sign '=' is a two-place predicate expressing that 'a is the same thing as b' (a=b) [Bostock]
     Full Idea: We shall use 'a=b' as short for 'a is the same thing as b'. The sign '=' thus expresses a particular two-place predicate. Officially we will use 'I' as the identity predicate, so that 'Iab' is as formula, but we normally 'abbreviate' this to 'a=b'.
     From: David Bostock (Intermediate Logic [1997], 8.1)
|= α=α and α=β |= φ(α/ξ ↔ φ(β/ξ) fix identity [Bostock]
     Full Idea: We usually take these two principles together as the basic principles of identity: |= α=α and α=β |= φ(α/ξ) ↔ φ(β/ξ). The second (with scant regard for history) is known as Leibniz's Law.
     From: David Bostock (Intermediate Logic [1997], 8.1)
If we are to express that there at least two things, we need identity [Bostock]
     Full Idea: To say that there is at least one thing x such that Fx we need only use an existential quantifier, but to say that there are at least two things we need identity as well.
     From: David Bostock (Intermediate Logic [1997], 8.1)
     A reaction: The only clear account I've found of why logic may need to be 'with identity'. Without it, you can only reason about one thing or all things. Presumably plural quantification no longer requires '='?
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
Truth-functors are usually held to be defined by their truth-tables [Bostock]
     Full Idea: The usual view of the meaning of truth-functors is that each is defined by its own truth-table, independently of any other truth-functor.
     From: David Bostock (Intermediate Logic [1997], 2.7)
5. Theory of Logic / E. Structures of Logic / 5. Functions in Logic
A 'zero-place' function just has a single value, so it is a name [Bostock]
     Full Idea: We can talk of a 'zero-place' function, which is a new-fangled name for a familiar item; it just has a single value, and so it has the same role as a name.
     From: David Bostock (Intermediate Logic [1997], 8.2)
A 'total' function ranges over the whole domain, a 'partial' function over appropriate inputs [Bostock]
     Full Idea: Usually we allow that a function is defined for arguments of a suitable kind (a 'partial' function), but we can say that each function has one value for any object whatever, from the whole domain that our quantifiers range over (a 'total' function).
     From: David Bostock (Intermediate Logic [1997], 8.2)
     A reaction: He points out (p.338) that 'the father of..' is a functional expression, but it wouldn't normally take stones as input, so seems to be a partial function. But then it doesn't even take all male humans either. It only takes fathers!
5. Theory of Logic / F. Referring in Logic / 1. Naming / a. Names
In logic, a name is just any expression which refers to a particular single object [Bostock]
     Full Idea: The important thing about a name, for logical purposes, is that it is used to make a singular reference to a particular object; ..we say that any expression too may be counted as a name, for our purposes, it it too performs the same job.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He cites definite descriptions as the most notoriously difficult case, in deciding whether or not they function as names. I takes it as pretty obvious that sometimes they do and sometimes they don't (in ordinary usage).
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
An expression is only a name if it succeeds in referring to a real object [Bostock]
     Full Idea: An expression is not counted as a name unless it succeeds in referring to an object, i.e. unless there really is an object to which it refers.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: His 'i.e.' makes the existence condition sound sufficient, but in ordinary language you don't succeed in referring to 'that man over there' just because he exists. In modal contexts we presumably refer to hypothetical objects (pace Lewis).
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions don't always pick out one thing, as in denials of existence, or errors [Bostock]
     Full Idea: It is natural to suppose one only uses a definite description when one believes it describes only one thing, but exceptions are 'there is no such thing as the greatest prime number', or saying something false where the reference doesn't occur.
     From: David Bostock (Intermediate Logic [1997], 8.3)
Definite desciptions resemble names, but can't actually be names, if they don't always refer [Bostock]
     Full Idea: Although a definite description looks like a complex name, and in many ways behaves like a name, still it cannot be a name if names must always refer to objects. Russell gave the first proposal for handling such expressions.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: I take the simple solution to be a pragmatic one, as roughly shown by Donnellan, that sometimes they are used exactly like names, and sometimes as something else. The same phrase can have both roles. Confusing for logicians. Tough.
Because of scope problems, definite descriptions are best treated as quantifiers [Bostock]
     Full Idea: Because of the scope problem, it now seems better to 'parse' definition descriptions not as names but as quantifiers. 'The' is to be treated in the same category as acknowledged quantifiers like 'all' and 'some'. We write Ix - 'for the x such that..'.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: This seems intuitively rather good, since quantification in normal speech is much more sophisticated than the crude quantification of classical logic. But the fact is that they often function as names (but see Idea 13817).
Definite descriptions are usually treated like names, and are just like them if they uniquely refer [Bostock]
     Full Idea: In practice, definite descriptions are for the most part treated as names, since this is by far the most convenient notation (even though they have scope). ..When a description is uniquely satisfied then it does behave like a name.
     From: David Bostock (Intermediate Logic [1997], 8.3)
     A reaction: Apparent names themselves have problems when they wander away from uniquely picking out one thing, as in 'John Doe'.
We are only obliged to treat definite descriptions as non-names if only the former have scope [Bostock]
     Full Idea: If it is really true that definite descriptions have scopes whereas names do not, then Russell must be right to claim that definite descriptions are not names. If, however, this is not true, then it does no harm to treat descriptions as complex names.
     From: David Bostock (Intermediate Logic [1997], 8.8)
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / c. Theory of definite descriptions
Names do not have scope problems (e.g. in placing negation), but Russell's account does have that problem [Bostock]
     Full Idea: In orthodox logic names are not regarded as having scope (for example, in where a negation is placed), whereas on Russell's theory definite descriptions certainly do. Russell had his own way of dealing with this.
     From: David Bostock (Intermediate Logic [1997], 8.3)
5. Theory of Logic / G. Quantification / 1. Quantification
'Prenex normal form' is all quantifiers at the beginning, out of the scope of truth-functors [Bostock]
     Full Idea: A formula is said to be in 'prenex normal form' (PNF) iff all its quantifiers occur in a block at the beginning, so that no quantifier is in the scope of any truth-functor.
     From: David Bostock (Intermediate Logic [1997], 3.7)
     A reaction: Bostock provides six equivalences which can be applied to manouevre any formula into prenex normal form. He proves that every formula can be arranged in PNF.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
If we allow empty domains, we must allow empty names [Bostock]
     Full Idea: We can show that if empty domains are permitted, then empty names must be permitted too.
     From: David Bostock (Intermediate Logic [1997], 8.4)
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional quantification is just standard if all objects in the domain have a name [Bostock]
     Full Idea: Substitutional quantification and quantification understood in the usual 'ontological' way will coincide when every object in the (ontological) domain has a name.
     From: David Bostock (Philosophy of Mathematics [2009], 7.3 n23)
5. Theory of Logic / H. Proof Systems / 1. Proof Systems
An 'informal proof' is in no particular system, and uses obvious steps and some ordinary English [Bostock]
     Full Idea: An 'informal proof' is not in any particular proof system. One may use any rule of proof that is 'sufficiently obvious', and there is quite a lot of ordinary English in the proof, explaining what is going on at each step.
     From: David Bostock (Intermediate Logic [1997], 8.1)
5. Theory of Logic / H. Proof Systems / 2. Axiomatic Proof
Quantification adds two axiom-schemas and a new rule [Bostock]
     Full Idea: New axiom-schemas for quantifiers: (A4) |-∀ξφ → φ(α/ξ), (A5) |-∀ξ(ψ→φ) → (ψ→∀ξφ), plus the rule GEN: If |-φ the |-∀ξφ(ξ/α).
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: This follows on from Idea 13610, where he laid out his three axioms and one rule for propositional (truth-functional) logic. This Idea plus 13610 make Bostock's proposed axiomatisation of first-order logic.
Axiom systems from Frege, Russell, Church, Lukasiewicz, Tarski, Nicod, Kleene, Quine... [Bostock]
     Full Idea: Notably axiomatisations of first-order logic are by Frege (1879), Russell and Whitehead (1910), Church (1956), Lukasiewicz and Tarski (1930), Lukasiewicz (1936), Nicod (1917), Kleene (1952) and Quine (1951). Also Bostock (1997).
     From: David Bostock (Intermediate Logic [1997], 5.8)
     A reaction: My summary, from Bostock's appendix 5.8, which gives details of all of these nine systems. This nicely illustrates the status and nature of axiom systems, which have lost the absolute status they seemed to have in Euclid.
5. Theory of Logic / H. Proof Systems / 3. Proof from Assumptions
'Conditonalised' inferences point to the Deduction Theorem: If Γ,φ|-ψ then Γ|-φ→ψ [Bostock]
     Full Idea: If a group of formulae prove a conclusion, we can 'conditionalize' this into a chain of separate inferences, which leads to the Deduction Theorem (or Conditional Proof), that 'If Γ,φ|-ψ then Γ|-φ→ψ'.
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: This is the rule CP (Conditional Proof) which can be found in the rules for propositional logic I transcribed from Lemmon's book.
The Deduction Theorem greatly simplifies the search for proof [Bostock]
     Full Idea: Use of the Deduction Theorem greatly simplifies the search for proof (or more strictly, the task of showing that there is a proof).
     From: David Bostock (Intermediate Logic [1997], 5.3)
     A reaction: See 13615 for details of the Deduction Theorem. Bostock is referring to axiomatic proof, where it can be quite hard to decide which axioms are relevant. The Deduction Theorem enables the making of assumptions.
Proof by Assumptions can always be reduced to Proof by Axioms, using the Deduction Theorem [Bostock]
     Full Idea: By repeated transformations using the Deduction Theorem, any proof from assumptions can be transformed into a fully conditionalized proof, which is then an axiomatic proof.
     From: David Bostock (Intermediate Logic [1997], 5.6)
     A reaction: Since proof using assumptions is perhaps the most standard proof system (e.g. used in Lemmon, for many years the standard book at Oxford University), the Deduction Theorem is crucial for giving it solid foundations.
The Deduction Theorem and Reductio can 'discharge' assumptions - they aren't needed for the new truth [Bostock]
     Full Idea: Like the Deduction Theorem, one form of Reductio ad Absurdum (If Γ,φ|-[absurdity] then Γ|-¬φ) 'discharges' an assumption. Assume φ and obtain a contradiction, then we know ¬&phi, without assuming φ.
     From: David Bostock (Intermediate Logic [1997], 5.7)
     A reaction: Thus proofs from assumption either arrive at conditional truths, or at truths that are true irrespective of what was initially assumed.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction takes proof from assumptions (with its rules) as basic, and axioms play no part [Bostock]
     Full Idea: Natural deduction takes the notion of proof from assumptions as a basic notion, ...so it will use rules for use in proofs from assumptions, and axioms (as traditionally understood) will have no role to play.
     From: David Bostock (Intermediate Logic [1997], 6.1)
     A reaction: The main rules are those for introduction and elimination of truth functors.
Excluded middle is an introduction rule for negation, and ex falso quodlibet will eliminate it [Bostock]
     Full Idea: Many books take RAA (reductio) and DNE (double neg) as the natural deduction introduction- and elimination-rules for negation, but RAA is not a natural introduction rule. I prefer TND (tertium) and EFQ (ex falso) for ¬-introduction and -elimination.
     From: David Bostock (Intermediate Logic [1997], 6.2)
In natural deduction we work from the premisses and the conclusion, hoping to meet in the middle [Bostock]
     Full Idea: When looking for a proof of a sequent, the best we can do in natural deduction is to work simultaneously in both directions, forward from the premisses, and back from the conclusion, and hope they will meet in the middle.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Natural deduction rules for → are the Deduction Theorem (→I) and Modus Ponens (→E) [Bostock]
     Full Idea: Natural deduction adopts for → as rules the Deduction Theorem and Modus Ponens, here called →I and →E. If ψ follows φ in the proof, we can write φ→ψ (→I). φ and φ→ψ permit ψ (→E).
     From: David Bostock (Intermediate Logic [1997], 6.2)
     A reaction: Natural deduction has this neat and appealing way of formally introducing or eliminating each connective, so that you know where you are, and you know what each one means.
The Deduction Theorem is what licenses a system of natural deduction [Bostock]
     Full Idea: The Deduction Theorem is what licenses a system of 'natural deduction' in the first place.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
A tree proof becomes too broad if its only rule is Modus Ponens [Bostock]
     Full Idea: When the only rule of inference is Modus Ponens, the branches of a tree proof soon spread too wide for comfort.
     From: David Bostock (Intermediate Logic [1997], 6.4)
Tableau proofs use reduction - seeking an impossible consequence from an assumption [Bostock]
     Full Idea: A tableau proof is a proof by reduction ad absurdum. One begins with an assumption, and one develops the consequences of that assumption, seeking to derive an impossible consequence.
     From: David Bostock (Intermediate Logic [1997], 4.1)
Non-branching rules add lines, and branching rules need a split; a branch with a contradiction is 'closed' [Bostock]
     Full Idea: Rules for semantic tableaus are of two kinds - non-branching rules and branching rules. The first allow the addition of further lines, and the second requires splitting the branch. A branch which assigns contradictory values to a formula is 'closed'.
     From: David Bostock (Intermediate Logic [1997], 4.1)
     A reaction: [compressed] Thus 'and' stays on one branch, asserting both formulae, but 'or' splits, checking first one and then the other. A proof succeeds when all the branches are closed, showing that the initial assumption leads only to contradictions.
A completed open branch gives an interpretation which verifies those formulae [Bostock]
     Full Idea: An open branch in a completed tableau will always yield an interpretation that verifies every formula on the branch.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: In other words the open branch shows a model which seems to work (on the available information). Similarly a closed branch gives a model which won't work - a counterexample.
In a tableau proof no sequence is established until the final branch is closed; hypotheses are explored [Bostock]
     Full Idea: In a tableau system no sequent is established until the final step of the proof, when the last branch closes, and until then we are simply exploring a hypothesis.
     From: David Bostock (Intermediate Logic [1997], 7.3)
     A reaction: This compares sharply with a sequence calculus, where every single step is a conclusive proof of something. So use tableaux for exploring proofs, and then sequence calculi for writing them up?
Unlike natural deduction, semantic tableaux have recipes for proving things [Bostock]
     Full Idea: With semantic tableaux there are recipes for proof-construction that we can operate, whereas with natural deduction there are not.
     From: David Bostock (Intermediate Logic [1997], 6.5)
Tableau rules are all elimination rules, gradually shortening formulae [Bostock]
     Full Idea: In their original setting, all the tableau rules are elimination rules, allowing us to replace a longer formula by its shorter components.
     From: David Bostock (Intermediate Logic [1997], 7.3)
5. Theory of Logic / H. Proof Systems / 6. Sequent Calculi
Each line of a sequent calculus is a conclusion of previous lines, each one explicitly recorded [Bostock]
     Full Idea: A sequent calculus keeps an explicit record of just what sequent is established at each point in a proof. Every line is itself the sequent proved at that point. It is not a linear sequence or array of formulae, but a matching array of whole sequents.
     From: David Bostock (Intermediate Logic [1997], 7.1)
A sequent calculus is good for comparing proof systems [Bostock]
     Full Idea: A sequent calculus is a useful tool for comparing two systems that at first look utterly different (such as natural deduction and semantic tableaux).
     From: David Bostock (Intermediate Logic [1997], 7.2)
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
Interpretation by assigning objects to names, or assigning them to variables first [Bostock, by PG]
     Full Idea: There are two approaches to an 'interpretation' of a logic: the first method assigns objects to names, and then defines connectives and quantifiers, focusing on truth; the second assigns objects to variables, then variables to names, using satisfaction.
     From: report of David Bostock (Intermediate Logic [1997], 3.4) by PG - Db (lexicon)
     A reaction: [a summary of nine elusive pages in Bostock] He says he prefers the first method, but the second method is more popular because it handles open formulas, by treating free variables as if they were names.
5. Theory of Logic / I. Semantics of Logic / 5. Extensionalism
Extensionality is built into ordinary logic semantics; names have objects, predicates have sets of objects [Bostock]
     Full Idea: Extensionality is built into the semantics of ordinary logic. When a name-letter is interpreted as denoting something, we just provide the object denoted. All that we provide for a one-place predicate-letter is the set of objects that it is true of..
     From: David Bostock (Intermediate Logic [1997])
     A reaction: Could we keep the syntax of ordinary logic, and provide a wildly different semantics, much closer to real life? We could give up these dreadful 'objects' that Frege lumbered us with. Logic for processes, etc.
If an object has two names, truth is undisturbed if the names are swapped; this is Extensionality [Bostock]
     Full Idea: If two names refer to the same object, then in any proposition which contains either of them the other may be substituted in its place, and the truth-value of the proposition of the proposition will be unaltered. This is the Principle of Extensionality.
     From: David Bostock (Intermediate Logic [1997], 3.1)
     A reaction: He acknowledges that ordinary language is full of counterexamples, such as 'he doesn't know the Morning Star and the Evening Star are the same body' (when he presumably knows that the Morning Star is the Morning Star). This is logic. Like maths.
5. Theory of Logic / K. Features of Logics / 2. Consistency
For 'negation-consistent', there is never |-(S)φ and |-(S)¬φ [Bostock]
     Full Idea: Any system of proof S is said to be 'negation-consistent' iff there is no formula such that |-(S)φ and |-(S)¬φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Compare Idea 13542. This version seems to be a 'strong' version, as it demands a higher standard than 'absolute consistency'. Both halves of the condition would have to be established.
A set of formulae is 'inconsistent' when there is no interpretation which can make them all true [Bostock]
     Full Idea: 'Γ |=' means 'Γ is a set of closed formulae, and there is no (standard) interpretation in which all of the formulae in Γ are true'. We abbreviate this last to 'Γ is inconsistent'.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: This is a semantic approach to inconsistency, in terms of truth, as opposed to saying that we cannot prove both p and ¬p. I take this to be closer to the true concept, since you need never have heard of 'proof' to understand 'inconsistent'.
A proof-system is 'absolutely consistent' iff we don't have |-(S)φ for every formula [Bostock]
     Full Idea: Any system of proof S is said to be 'absolutely consistent' iff it is not the case that for every formula we have |-(S)φ.
     From: David Bostock (Intermediate Logic [1997], 4.5)
     A reaction: Bostock notes that a sound system will be both 'negation-consistent' (Idea 13541) and absolutely consistent. 'Tonk' systems can be shown to be unsound because the two come apart.
5. Theory of Logic / K. Features of Logics / 6. Compactness
Inconsistency or entailment just from functors and quantifiers is finitely based, if compact [Bostock]
     Full Idea: Being 'compact' means that if we have an inconsistency or an entailment which holds just because of the truth-functors and quantifiers involved, then it is always due to a finite number of the propositions in question.
     From: David Bostock (Intermediate Logic [1997], 4.8)
     A reaction: Bostock says this is surprising, given the examples 'a is not a parent of a parent of b...' etc, where an infinity seems to establish 'a is not an ancestor of b'. The point, though, is that this truth doesn't just depend on truth-functors and quantifiers.
Compactness means an infinity of sequents on the left will add nothing new [Bostock]
     Full Idea: The logic of truth-functions is compact, which means that sequents with infinitely many formulae on the left introduce nothing new. Hence we can confine our attention to finite sequents.
     From: David Bostock (Intermediate Logic [1997], 5.5)
     A reaction: This makes it clear why compactness is a limitation in logic. If you want the logic to be unlimited in scope, it isn't; it only proves things from finite numbers of sequents. This makes it easier to prove completeness for the system.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox considers the meaning of 'The least number not named by this name' [Bostock]
     Full Idea: Berry's Paradox can be put in this form, by considering the alleged name 'The least number not named by this name'.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / e. The Lottery paradox
The Lottery Paradox says each ticket is likely to lose, so there probably won't be a winner [Bonjour, by PG]
     Full Idea: The Lottery Paradox says that for 100 tickets and one winner, each ticket has a .99 likelihood of defeat, so they are all likely to lose, so there is unlikely to be a winner.
     From: report of Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], §5) by PG - Db (ideas)
     A reaction: The problem seems to be viewing each ticket in isolation. If I buy two tickets, I increase my chances of winning.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Each addition changes the ordinality but not the cardinality, prior to aleph-1 [Bostock]
     Full Idea: If you add to the ordinals you produce many different ordinals, each measuring the length of the sequence of ordinals less than it. They each have cardinality aleph-0. The cardinality eventually increases, but we can't say where this break comes.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
ω + 1 is a new ordinal, but its cardinality is unchanged [Bostock]
     Full Idea: If we add ω onto the end of 0,1,2,3,4..., it then has a different length, of ω+1. It has a different ordinal (since it can't be matched with its first part), but the same cardinal (since adding 1 makes no difference).
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: [compressed] The ordinals and cardinals coincide up to ω, but this is the point at which they come apart.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
A cardinal is the earliest ordinal that has that number of predecessors [Bostock]
     Full Idea: It is the usual procedure these days to identify a cardinal number with the earliest ordinal number that has that number of predecessors.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: This sounds circular, since you need to know the cardinal in order to decide which ordinal is the one you want, but, hey, what do I know?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
Aleph-1 is the first ordinal that exceeds aleph-0 [Bostock]
     Full Idea: The cardinal aleph-1 is identified with the first ordinal to have more than aleph-0 members, and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 5.4)
     A reaction: That is, the succeeding infinite ordinals all have the same cardinal number of members (aleph-0), until the new total is triggered (at the number of the reals). This is Continuum Hypothesis territory.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Instead of by cuts or series convergence, real numbers could be defined by axioms [Bostock]
     Full Idea: In addition to cuts, or converging series, Cantor suggests we can simply lay down a set of axioms for the real numbers, and this can be done without any explicit mention of the rational numbers [note: the axioms are those for a complete ordered field].
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: It is interesting when axioms are best, and when not. Set theory depends entirely on axioms. Horsten and Halbach are now exploring treating truth as axiomatic. You don't give the 'nature' of the thing - just rules for its operation.
The number of reals is the number of subsets of the natural numbers [Bostock]
     Full Idea: It is not difficult to show that the number of the real numbers is the same as the number of all the subsets of the natural numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 4.5)
     A reaction: The Continuum Hypothesis is that this is the next infinite number after the number of natural numbers. Why can't there be a number which is 'most' of the subsets of the natural numbers?
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
For Eudoxus cuts in rationals are unique, but not every cut makes a real number [Bostock]
     Full Idea: As Eudoxus claimed, two distinct real numbers cannot both make the same cut in the rationals, for any two real numbers must be separated by a rational number. He did not say, though, that for every such cut there is a real number that makes it.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4)
     A reaction: This is in Bostock's discussion of Dedekind's cuts. It seems that every cut is guaranteed to produce a real. Fine challenges the later assumption.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Infinitesimals are not actually contradictory, because they can be non-standard real numbers [Bostock]
     Full Idea: Non-standard natural numbers will yield non-standard rational and real numbers. These will include reciprocals which will be closer to 0 than any standard real number. These are like 'infinitesimals', so that notion is not actually a contradiction.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Modern axioms of geometry do not need the real numbers [Bostock]
     Full Idea: A modern axiomatisation of geometry, such as Hilbert's (1899), does not need to claim the existence of real numbers anywhere in its axioms.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.ii)
     A reaction: This is despite the fact that geometry is reduced to algebra, and the real numbers are the equivalent of continuous lines. Bostock votes for a Greek theory of proportion in this role.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
The Peano Axioms describe a unique structure [Bostock]
     Full Idea: The Peano Axioms are categorical, meaning that they describe a unique structure.
     From: David Bostock (Philosophy of Mathematics [2009], 4.4 n20)
     A reaction: So if you think there is nothing more to the natural numbers than their structure, then the Peano Axioms give the essence of arithmetic. If you think that 'objects' must exist to generate a structure, there must be more to the numbers.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Ordinary or mathematical induction assumes for the first, then always for the next, and hence for all [Bostock]
     Full Idea: The principle of mathematical (or ordinary) induction says suppose the first number, 0, has a property; suppose that if any number has that property, then so does the next; then it follows that all numbers have the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Ordinary induction is also known as 'weak' induction. Compare Idea 13359 for 'strong' or complete induction. The number sequence must have a first element, so this doesn't work for the integers.
Complete induction assumes for all numbers less than n, then also for n, and hence for all numbers [Bostock]
     Full Idea: The principle of complete induction says suppose that for every number, if all the numbers less than it have a property, then so does it; it then follows that every number has the property.
     From: David Bostock (Intermediate Logic [1997], 2.8)
     A reaction: Complete induction is also known as 'strong' induction. Compare Idea 13358 for 'weak' or mathematical induction. The number sequence need have no first element.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Hume's Principle is a definition with existential claims, and won't explain numbers [Bostock]
     Full Idea: Hume's Principle will not do as an implicit definition because it makes a positive claim about the size of the universe (which no mere definition can do), and because it does not by itself explain what the numbers are.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Many things will satisfy Hume's Principle, so there are many interpretations of it [Bostock]
     Full Idea: Hume's Principle gives a criterion of identity for numbers, but it is obvious that many other things satisfy that criterion. The simplest example is probably the numerals (in any notation, decimal, binary etc.), giving many different interpretations.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
There are many criteria for the identity of numbers [Bostock]
     Full Idea: There is not just one way of giving a criterion of identity for numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
Frege makes numbers sets to solve the Caesar problem, but maybe Caesar is a set! [Bostock]
     Full Idea: The Julius Caesar problem was one reason that led Frege to give an explicit definition of numbers as special sets. He does not appear to notice that the same problem affects his Axiom V for introducing sets (whether Caesar is or is not a set).
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: The Julius Caesar problem is a sceptical acid that eats into everything in philosophy of mathematics. You give all sorts of wonderful accounts of numbers, but at what point do you know that you now have a number, and not something else?
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Numbers can't be positions, if nothing decides what position a given number has [Bostock]
     Full Idea: There is no ground for saying that a number IS a position, if the truth is that there is nothing to determine which number is which position.
     From: David Bostock (Philosophy of Mathematics [2009], 6.4)
     A reaction: If numbers lose touch with the empirical ability to count physical objects, they drift off into a mad world where they crumble away.
Structuralism falsely assumes relations to other numbers are numbers' only properties [Bostock]
     Full Idea: Structuralism begins from a false premise, namely that numbers have no properties other than their relations to other numbers.
     From: David Bostock (Philosophy of Mathematics [2009], 6.5)
     A reaction: Well said. Describing anything purely relationally strikes me as doomed, because you have to say why those things relate in those ways.
6. Mathematics / C. Sources of Mathematics / 3. Mathematical Nominalism
Nominalism about mathematics is either reductionist, or fictionalist [Bostock]
     Full Idea: Nominalism has two main versions, one which tries to 'reduce' the objects of mathematics to something simpler (Russell and Wittgenstein), and another which claims that such objects are mere 'fictions' which have no reality (Field).
     From: David Bostock (Philosophy of Mathematics [2009], 9)
Nominalism as based on application of numbers is no good, because there are too many applications [Bostock]
     Full Idea: The style of nominalism which aims to reduce statements about numbers to statements about their applications does not work for the natural numbers, because they have many applications, and it is arbitrary to choose just one of them.
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5.iii)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / b. Indispensability of mathematics
Actual measurement could never require the precision of the real numbers [Bostock]
     Full Idea: We all know that in practice no physical measurement can be 100 per cent accurate, and so it cannot require the existence of a genuinely irrational number, rather than some of the rational numbers close to it.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.3)
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Ordinals are mainly used adjectively, as in 'the first', 'the second'... [Bostock]
     Full Idea: The basic use of the ordinal numbers is their use as ordinal adjectives, in phrases such as 'the first', 'the second' and so on.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: That is because ordinals seem to attach to particulars, whereas cardinals seem to attach to groups. Then you say 'three is greater than four', it is not clear which type you are talking about.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
Simple type theory has 'levels', but ramified type theory has 'orders' [Bostock]
     Full Idea: The simple theory of types distinguishes sets into different 'levels', but this is quite different from the distinction into 'orders' which is imposed by the ramified theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.1)
     A reaction: The ramified theory has both levels and orders (p.235). Russell's terminology is, apparently, inconsistent.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
Neo-logicists meet the Caesar problem by saying Hume's Principle is unique to number [Bostock]
     Full Idea: The response of neo-logicists to the Julius Caesar problem is to strengthen Hume's Principle in the hope of ensuring that only numbers will satisfy it. They say the criterion of identity provided by HP is essential to number, and not to anything else.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
Neo-logicists agree that HP introduces number, but also claim that it suffices for the job [Bostock]
     Full Idea: The neo-logicists take up Frege's claim that Hume's Principle introduces a new concept (of a number), but unlike Frege they go on to claim that it by itself gives a complete account of that concept.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: So the big difference between Frege and neo-logicists is the Julius Caesar problem.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Treating numbers as objects doesn't seem like logic, since arithmetic fixes their totality [Bostock]
     Full Idea: If logic is neutral on the number of objects there are, then logicists can't construe numbers as objects, for arithmetic is certainly not neutral on the number of numbers there are. They must be treated in some other way, perhaps as numerical quantifiers.
     From: David Bostock (Philosophy of Mathematics [2009], 5.5)
If Hume's Principle is the whole story, that implies structuralism [Bostock]
     Full Idea: If Hume's Principle is all we are given, by way of explanation of what the numbers are, the only conclusion to draw would seem to be the structuralists' conclusion, ...studying all systems that satisfy that principle.
     From: David Bostock (Philosophy of Mathematics [2009], 9.A.2)
     A reaction: Any approach that implies a set of matching interpretations will always imply structuralism. To avoid it, you need to pin the target down uniquely.
Many crucial logicist definitions are in fact impredicative [Bostock]
     Full Idea: Many of the crucial definitions in the logicist programme are in fact impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
6. Mathematics / C. Sources of Mathematics / 9. Fictional Mathematics
Higher cardinalities in sets are just fairy stories [Bostock]
     Full Idea: In its higher reaches, which posit sets of huge cardinalities, set theory is just a fairy story.
     From: David Bostock (Philosophy of Mathematics [2009], 9.5.iii)
     A reaction: You can't say the higher reaches are fairy stories but the lower reaches aren't, if the higher is directly derived from the lower. The empty set and the singleton are fairy stories too. Bostock says the axiom of infinity triggers the fairy stories.
A fairy tale may give predictions, but only a true theory can give explanations [Bostock]
     Full Idea: A common view is that although a fairy tale may provide very useful predictions, it cannot provide explanations for why things happen as they do. In order to do that a theory must also be true (or, at least, an approximation to the truth).
     From: David Bostock (Philosophy of Mathematics [2009], 9.B.5)
     A reaction: Of course, fictionalism offers an explanation of mathematics as a whole, but not of the details (except as the implications of the initial fictional assumptions).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
The best version of conceptualism is predicativism [Bostock]
     Full Idea: In my personal opinion, predicativism is the best version of conceptualism that we have yet discovered.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: Since conceptualism is a major player in the field, this makes predicativism a very important view. I won't vote Predicativist quite yet, but I'm tempted.
Conceptualism fails to grasp mathematical properties, infinity, and objective truth values [Bostock]
     Full Idea: Three simple objections to conceptualism in mathematics are that we do not ascribe mathematical properties to our ideas, that our ideas are presumably finite, and we don't think mathematics lacks truthvalue before we thought of it.
     From: David Bostock (Philosophy of Mathematics [2009], 8.4)
     A reaction: [compressed; Bostock refers back to his Ch 2] Plus Idea 18134. On the whole I sympathise with conceptualism, so I will not allow myself to be impressed by any of these objections. (So, what's actually wrong with them.....?).
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
If abstracta only exist if they are expressible, there can only be denumerably many of them [Bostock]
     Full Idea: If an abstract object exists only when there is some suitable way of expressing it, then there are at most denumerably many abstract objects.
     From: David Bostock (Philosophy of Mathematics [2009], 8.2)
     A reaction: Fine by me. What an odd view, to think there are uncountably many abstract objects in existence, only a countable portion of which will ever be expressed! [ah! most people agree with me, p.243-4]
Predicativism makes theories of huge cardinals impossible [Bostock]
     Full Idea: Classical mathematicians say predicative mathematics omits areas of great interest, all concerning non-denumerable real numbers, such as claims about huge cardinals. There cannot be a predicative version of this theory.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I'm not sure that anyone will really miss huge cardinals if they are prohibited, though cryptography seems to flirt with such things. Are we ever allowed to say that some entity conjured up by mathematicians is actually impossible?
If mathematics rests on science, predicativism may be the best approach [Bostock]
     Full Idea: It has been claimed that only predicative mathematics has a justification through its usefulness to science (an empiricist approach).
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [compressed. Quine is the obvious candidate] I suppose predicativism gives your theory roots, whereas impredicativism is playing an abstract game.
If we can only think of what we can describe, predicativism may be implied [Bostock]
     Full Idea: If we accept the initial idea that we can think only of what we ourselves can describe, then something like the theory of predicativism quite naturally results
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: I hate the idea that we can only talk of what falls under a sortal, but 'what we can describe' is much more plausible. Whether or not you agree with this approach (I'm pondering it), this makes predicativism important.
The usual definitions of identity and of natural numbers are impredicative [Bostock]
     Full Idea: The predicative approach cannot accept either the usual definition of identity or the usual definition of the natural numbers, for both of these definitions are impredicative.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
     A reaction: [Bostock 237-8 gives details]
The predicativity restriction makes a difference with the real numbers [Bostock]
     Full Idea: It is with the real numbers that the restrictions imposed by predicativity begin to make a real difference.
     From: David Bostock (Philosophy of Mathematics [2009], 8.3)
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is not reflexive, just because it is transitive and symmetrical [Bostock]
     Full Idea: It is easy to fall into the error of supposing that a relation which is both transitive and symmetrical must also be reflexive.
     From: David Bostock (Intermediate Logic [1997], 4.7)
     A reaction: Compare Idea 14430! Transivity will take you there, and symmetricality will get you back, but that doesn't entitle you to take the shortcut?
Relations can be one-many (at most one on the left) or many-one (at most one on the right) [Bostock]
     Full Idea: A relation is 'one-many' if for anything on the right there is at most one on the left (∀xyz(Rxz∧Ryz→x=y), and is 'many-one' if for anything on the left there is at most one on the right (∀xyz(Rzx∧Rzy→x=y).
     From: David Bostock (Intermediate Logic [1997], 8.1)
9. Objects / F. Identity among Objects / 5. Self-Identity
If non-existent things are self-identical, they are just one thing - so call it the 'null object' [Bostock]
     Full Idea: If even non-existent things are still counted as self-identical, then all non-existent things must be counted as identical with one another, so there is at most one non-existent thing. We might arbitrarily choose zero, or invent 'the null object'.
     From: David Bostock (Intermediate Logic [1997], 8.6)
10. Modality / A. Necessity / 6. Logical Necessity
The idea that anything which can be proved is necessary has a problem with empty names [Bostock]
     Full Idea: The common Rule of Necessitation says that what can be proved is necessary, but this is incorrect if we do not permit empty names. The most straightforward answer is to modify elementary logic so that only necessary truths can be proved.
     From: David Bostock (Intermediate Logic [1997], 8.4)
10. Modality / B. Possibility / 1. Possibility
The concept of possibility is prior to that of necessity [Bonjour]
     Full Idea: While necessity and possibility are interdefinable concepts, it is the idea of a possible world or situation which is intuitively primary.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §1.3)
11. Knowledge Aims / A. Knowledge / 1. Knowledge
The concept of knowledge is so confused that it is best avoided [Bonjour]
     Full Idea: The concept of knowledge is seriously problematic in more than one way, and is best avoided as far as possible in sober epistemological discussion.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 1.5)
     A reaction: Two sorts of states seem to be conflated: one where an animal has a true belief caused by an environmental event, and the other where a scholar pores over books and experiments to arrive at a hard-won truth. I say only the second is 'knowledge'.
12. Knowledge Sources / A. A Priori Knowledge / 2. Self-Evidence
It is hard to give the concept of 'self-evident' a clear and defensible characterization [Bonjour]
     Full Idea: Foundationalists find it difficult to attach a clear and defensible content to the idea that basic beliefs that are characterized as 'self-justified' or 'self-evident'.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 1.4)
     A reaction: A little surprising from a fan of a priori foundations, especially given that 'self-evident' is common usage, and not just philosophers' jargon. I think we can talk of self-evidence without a precise definition. We talk of an 'ocean' without trouble.
12. Knowledge Sources / B. Perception / 8. Adverbial Theory
The adverbial account will still be needed when a mind apprehends its sense-data [Bonjour]
     Full Idea: The adverbial account of the content of experience is almost certainly correct, because no account can be given of the relation between sense-data and the apprehending mind that is independent of the adverbial theory.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 5.1 n3)
     A reaction: This boils down to the usual objection to sense-data, which is 'cut out the middle man'. Bonjour is right that at some point the mind has finally to experience whatever is coming in, and it must experience it in a particular way.
12. Knowledge Sources / C. Rationalism / 1. Rationalism
Our rules of thought can only be judged by pure rational insight [Bonjour]
     Full Idea: Criteria or rules do not somehow apply to themselves. They must be judged by the sort of rational insight or intuition that the rationalist is advocating.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §5.2)
Moderate rationalists believe in fallible a priori justification [Bonjour]
     Full Idea: Moderate rationalism preserves a priori justification, but rejects the idea that it is infallible.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §4.1)
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / a. Foundationalism
Externalist theories of knowledge are one species of foundationalism [Bonjour]
     Full Idea: Externalist theories of knowledge are one species of foundationalism.
     From: Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], Intro)
     A reaction: I don't see why there shouldn't be a phenomenalist, anti-realist version of externalism, which just has 'starting points' instead of a serious commitment to foundations.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / b. Basic beliefs
The big problem for foundationalism is to explain how basic beliefs are possible [Bonjour]
     Full Idea: The fundamental question that must be answered by any acceptable version of foundationalism is: how are basic beliefs possible?
     From: Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], §I)
     A reaction: This question seems to be asking for a justification for basic beliefs, which smacks of 'Who made God?' Look, basic beliefs are just basic, right?
Conscious states have built-in awareness of content, so we know if a conceptual description of it is correct [Bonjour]
     Full Idea: If we describe a non-conceptual conscious state, we are aware of its character via the constitutive or 'built-in' awareness of content without need for a conceptual description, and so recognise that a conceptually formulated belief about it is correct.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 4.3)
     A reaction: This is Bonjour working very hard to find an account of primitive sense experiences which will enable them to function as 'basic beliefs' for foundations, without being too thin to do anything, or too thick to be basic. I'm not convinced.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / d. Rational foundations
A priori justification requires understanding but no experience [Bonjour]
     Full Idea: A proposition will count as being justified a priori as long as no appeal to experience is needed for the proposition to be justified - once it is understood.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §1.2)
     A reaction: Could you 'understand' that a square cannot be circular without appeal to experience? I'm losing faith in the pure a priori.
You can't explain away a priori justification as analyticity, and you can't totally give it up [Bonjour]
     Full Idea: Moderate empiricists try unsuccessfully to explain a priori justification by means of analyticity, and radical empiricist attempts to dispense with a priori justification end in nearly total scepticism.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §4.1)
     A reaction: My working theory is neither of the above. Because we can abstract from the physical world, we can directly see/experience generalised (and even necessary) truths about it.
A priori justification can vary in degree [Bonjour]
     Full Idea: A priori justification can vary in degree.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §4.5)
     A reaction: This idea, which I trace back at least to Russell, seems to me one of breakthrough ideas in modern thought. It means that a priori knowledge can be reconnected with a posteriori knowledge.
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / e. Pro-foundations
The main argument for foundationalism is that all other theories involve a regress leading to scepticism [Bonjour]
     Full Idea: The central argument for foundationalism is simply that all other possible outcomes of the regress of justifications lead inexorably to scepticism.
     From: Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], §I)
     A reaction: If you prefer coherence to foundations, you need the security of reason to assess the coherence (which seems to be an internal foundation!).
13. Knowledge Criteria / B. Internal Justification / 4. Foundationalism / f. Foundationalism critique
The induction problem blocks any attempted proof of physical statements [Bonjour]
     Full Idea: The attempt to prove physical statements on the basis of sensory evidence is defeated by the problem of induction.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §3.6)
     A reaction: This sounds like a logician's use of the word 'prove', which would be a pretty forlorn hope. Insofar as experience proves anything, fully sensing a chair proves its existence.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
A coherence theory of justification can combine with a correspondence theory of truth [Bonjour]
     Full Idea: There is no manifest absurdity in combining a coherence theory of justification with a correspondence theory of truth.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.1)
     A reaction: His point is to sharply (and correctly) distinguish coherent justification from a coherence theory of truth. Personally I would recommend talking of a 'robust' theory of truth, without tricky commitment to 'correspondence' between very dissimilar things.
There will always be a vast number of equally coherent but rival systems [Bonjour]
     Full Idea: On any plausible conception of coherence, there will always be many, probably infinitely many, different and incompatible systems of belief which are equally coherent.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: If 'infinitely many' theories are allowed, that blocks the coherentist hope that widening and precisifying the system will narrow down the options and offer some verisimilitude. If we stick to current English expression, that should keep them finite.
Empirical coherence must attribute reliability to spontaneous experience [Bonjour]
     Full Idea: An empirical coherence theory needs, for the beliefs of a cognitive system to be even candidates for empirical justification, that the system must contain laws attributing a high degree of reliability to a variety of spontaneous cognitive beliefs.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 7.1)
     A reaction: Wanting such a 'law' seems optimistic, and not in the spirit of true coherentism, which can individually evaluate each experiential belief. I'm not sure Bonjour's Observation Requirement is needed, since it is incoherent to neglect observations.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / b. Pro-coherentism
A well written novel cannot possibly match a real belief system for coherence [Bonjour]
     Full Idea: It is not even minimally plausible that a well written novel ...would have the degree of coherence required to be a serious alternative to anyone's actual system of beliefs.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: This seems correct. 'Bleak House' is wonderfully consistent, but its elements are entirely verbal, and nothing occupies the space between the facts that are described. And Lady Dedlock is not in Debrett. I think this kills a standard objection.
The objection that a negated system is equally coherent assume that coherence is consistency [Bonjour]
     Full Idea: Sometimes it is said that if one has an appropriately coherent system, an alternative system can be produced simply be negating all of the components of the first system. This would only be so if coherence amounted simply to consistency.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.5)
     A reaction: I associate Russell with this original objection to coherentism. I formerly took this to be a serious problem, and am now relieved to see that it clearly isn't.
A coherent system can be justified with initial beliefs lacking all credibility [Bonjour]
     Full Idea: It is simply not necessary in order for [the coherence] view to yield justification to suppose that cognitively spontaneous beliefs have some degree of initial or independent credibility.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 7.2)
     A reaction: This is thoroughly and rather persuasively criticised by Erik Olson. But he always focuses on the coherence of a 'system' with multiple beliefs. I take the credibility of each individual belief to need coherent assessment against a full background.
The best explanation of coherent observations is they are caused by and correspond to reality [Bonjour]
     Full Idea: The best explanation for a stable system of beliefs which rely on observation is that the beliefs are caused by what they depict, and the system roughly corresponds to the independent reality it describes.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 8.3)
     A reaction: [compressed] Anyone who links best explanation to coherence (and to induction) warms the cockles of my heart. Erik Olson offers a critique, but doesn't convince me. The alternative is to find a better explanation (than reality), or give up.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / c. Coherentism critique
My incoherent beliefs about art should not undermine my very coherent beliefs about physics [Bonjour]
     Full Idea: If coherentism is construed as involving the believer's entire body of beliefs, that would imply, most implausibly, that the justification of a belief in one area (physics) could be undermined by serious incoherence in another area (art history).
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 3.1)
     A reaction: Bonjour suggests that a moderated coherentism is needed to avoid this rather serious problem. It is hard to see how a precise specification could be given of 'areas' and 'local coherence'. An idiot about art would inspire little confidence on physics.
Coherence seems to justify empirical beliefs about externals when there is no external input [Bonjour]
     Full Idea: The 1st standard objection to coherence is the 'isolation problem', that contingent apparently-empirical beliefs might be justified in the absence of any informational input from the extra-conceptual world they attempt to describe.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 3.2)
     A reaction: False beliefs can be well justified. In a perfect virtual reality we would believe our experiences precisely because they were so coherent. Messengers from the front line have top priority, but how do you detect infiltrators and liars?
Coherentists must give a reason why coherent justification is likely to lead to the truth [Bonjour]
     Full Idea: The 3rd standard objection to coherence is the demand for a meta-justification for coherence, a reason for thinking that justification on the basis of the coherentist view of justification is in fact likely to lead to believing the truth.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 3.2)
     A reaction: Some coherentists respond by adopting a coherence theory of truth, which strikes me as extremely unwise. There must be an underlying optimistic view, centred on the principle of sufficient reason, that reality itself is coherent. I like Idea 8618.
13. Knowledge Criteria / C. External Justification / 1. External Justification
Extreme externalism says no more justification is required than the truth of the belief [Bonjour]
     Full Idea: The most extreme version of externalism would be one that held that the external condition required for justification is simply the truth of the belief in question.
     From: Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], §II)
     A reaction: The question is, why should we demand any more than this? The problem case is, traditionally, the lucky guess, but naturalist may say that these just don't occur with any regularity. We only get beliefs right because they are true.
Externalist theories of justification don't require believers to have reasons for their beliefs [Bonjour]
     Full Idea: An externalist theory of epistemic justification or warrant need not involve the possession by the believer of anything like a reason for thinking that their belief is true.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §3.7)
     A reaction: That is the problem with externalism. If the believer does not have a reason, then why would they believe? Externalists are interesting on justification, but daft about belief. Why do I believe I know something, when I can't recall how I learnt it?
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / a. Reliable knowledge
Reliabilists disagree over whether some further requirement is needed to produce knowledge [Bonjour]
     Full Idea: Reliabilist views differ among themselves with regard to whether a belief's being produced in a reliable way is by itself sufficient for epistemic justification or whether there are further requirements that must be satisfied as well.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 2.1)
     A reaction: If 'further requirements' are needed, the crucial question would be which one is trumps when they clash. If the further requirements can correct the reliable source, then it cannot any longer be called 'reliabilism'. It's Further-requirement-ism.
13. Knowledge Criteria / C. External Justification / 3. Reliabilism / b. Anti-reliabilism
External reliability is not enough, if the internal state of the believer is known to be irrational [Bonjour]
     Full Idea: External or objective reliability is not enough to offset subjective irrationality (such as unexplained clairvoyance).
     From: Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], §IV)
     A reaction: A good argument. Where do animals fit into this? If your clairvoyance kept working, in the end you might concede that you 'knew', even though you were baffled about how you managed it.
If the reliable facts producing a belief are unknown to me, my belief is not rational or responsible [Bonjour]
     Full Idea: How can the fact that a belief is reliably produced make my acceptance of that belief rational and responsible when that fact itself is entirely unavailable to me?
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 2.2)
     A reaction: This question must rival Pollock's proposal (Idea 8815) as the master argument against externalism. Bonjour is assuming that knowledge has to be 'rational and responsible', but clearly externalists take a more lax view of knowledge.
13. Knowledge Criteria / C. External Justification / 10. Anti External Justification
Even if there is no obvious irrationality, it may be irrational to base knowledge entirely on external criteria [Bonjour]
     Full Idea: It may be that where there are no positive grounds for a charge of irrationality, the acceptance of a belief with only external justification is still subjectively irrational in a sense that rules out its being epistemologically justified.
     From: Laurence Bonjour (Externalist Theories of Empirical Knowledge [1980], §IV)
     A reaction: A key objection. Surely rational behaviour requires a judgement to be made before a belief is accepted? If you are consistently clairvoyant, you must ask why.
Externalism means we have no reason to believe, which is strong scepticism [Bonjour]
     Full Idea: If externalism is the final story, we have no reason to think that any of our beliefs are true, which amounts to a very strong and intuitively implausible version of scepticism.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §3.7)
     A reaction: A very good point. I may, like a cat, know many things, with good external support, but as soon as I ask sceptical questions, I sink without trace if I lack internal reasons.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
14. Science / A. Basis of Science / 5. Anomalies
Anomalies challenge the claim that the basic explanations are actually basic [Bonjour]
     Full Idea: The distinctive significance of anomalies lies in the fact that they undermine the claim of the allegedly basic explanatory principles to be genuinely basic.
     From: Laurence Bonjour (The Structure of Empirical Knowledge [1985], 5.3)
     A reaction: This seems plausible, suggesting that (rather than an anomaly flatly 'falsifying' a theory) an anomaly may just demand a restructuring or reconceptualising of the theory.
14. Science / C. Induction / 2. Aims of Induction
Induction must go beyond the evidence, in order to explain why the evidence occurred [Bonjour]
     Full Idea: Inductive explanations must be conceived of as something stronger than mere Humean constant conjunction; …anything less than this will not explain why the inductive evidence occurred in the first place.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §7.7)
15. Nature of Minds / B. Features of Minds / 1. Consciousness / f. Higher-order thought
If neither the first-level nor the second-level is itself conscious, there seems to be no consciousness present [Bonjour]
     Full Idea: In the higher-order thought theory of consciousness, if the first-order thought is not itself conscious and the second-order thought is not itself conscious, then there seems to be no consciousness of the first-level content present at all.
     From: Laurence Bonjour (A Version of Internalist Foundationalism [2003], 4.2)
     A reaction: A nice basic question. The only plausible answer seems to be that consciousness arises out of the combination of levels. Otherwise one of the levels is redundant, or we are facing a regress.
18. Thought / C. Content / 1. Content
All thought represents either properties or indexicals [Bonjour]
     Full Idea: I assume that the contents of thought can be accounted for by appeal to just two general sorts of ingredient - properties (including relations) and indexicals.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §6.7)
     A reaction: I don't accept that relations are a type of properties. Since he does not include objects or substances, I take it that he considers objects to be bundles of properties.
19. Language / C. Assigning Meanings / 3. Predicates
A (modern) predicate is the result of leaving a gap for the name in a sentence [Bostock]
     Full Idea: A simple way of approaching the modern notion of a predicate is this: given any sentence which contains a name, the result of dropping that name and leaving a gap in its place is a predicate. Very different from predicates in Aristotle and Kant.
     From: David Bostock (Intermediate Logic [1997], 3.2)
     A reaction: This concept derives from Frege. To get to grips with contemporary philosophy you have to relearn all sorts of basic words like 'predicate' and 'object'.
19. Language / F. Communication / 2. Assertion
In logic a proposition means the same when it is and when it is not asserted [Bostock]
     Full Idea: In Modus Ponens where the first premise is 'P' and the second 'P→Q', in the first premise P is asserted but in the second it is not. Yet it must mean the same in both premises, or it would be guilty of the fallacy of equivocation.
     From: David Bostock (Philosophy of Mathematics [2009], 7.2)
     A reaction: This is Geach's thought (leading to an objection to expressivism in ethics, that P means the same even if it is not expressed).
19. Language / F. Communication / 6. Interpreting Language / b. Indeterminate translation
Indeterminacy of translation is actually indeterminacy of meaning and belief [Bonjour]
     Full Idea: The thesis of the indeterminacy of translation would be better described as the thesis of the indeterminacy of meaning and belief.
     From: Laurence Bonjour (In Defence of Pure Reason [1998], §3.5)
     A reaction: Not necessarily. It is not incoherent to believe that the target people have a coherent and stable system of meaning and belief, but finding its translation indeterminate because it is holistic, and rooted in a way of life.