Combining Philosophers

All the ideas for Anaxarchus, Mark Colyvan and Curt Ducasse

unexpand these ideas     |    start again     |     specify just one area for these philosophers


30 ideas

2. Reason / D. Definition / 2. Aims of Definition
A correct definition is what can be substituted without loss of meaning [Ducasse]
     Full Idea: A definition of a word is correct if the definition can be substituted for the word being defined in an assertion without in the least changing the meaning which the assertion is felt to have.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §1)
     A reaction: This sounds good, but a very bland and uninformative rephrasing would fit this account, without offering anything very helpful. The word 'this' could be substituted for a lot of object words. A 'blade' is 'a thing always attached to a knife handle'.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Showing a disproof is impossible is not a proof, so don't eliminate double negation [Colyvan]
     Full Idea: In intuitionist logic double negation elimination fails. After all, proving that there is no proof that there can't be a proof of S is not the same thing as having a proof of S.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: I do like people like Colyvan who explain things clearly. All of this difficult stuff is understandable, if only someone makes the effort to explain it properly.
Rejecting double negation elimination undermines reductio proofs [Colyvan]
     Full Idea: The intuitionist rejection of double negation elimination undermines the important reductio ad absurdum proof in classical mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Excluded middle says P or not-P; bivalence says P is either true or false [Colyvan]
     Full Idea: The law of excluded middle (for every proposition P, either P or not-P) must be carefully distinguished from its semantic counterpart bivalence, that every proposition is either true or false.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: So excluded middle makes no reference to the actual truth or falsity of P. It merely says P excludes not-P, and vice versa.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim proved his result for a first-order sentence, and Skolem generalised it [Colyvan]
     Full Idea: Löwenheim proved that if a first-order sentence has a model at all, it has a countable model. ...Skolem generalised this result to systems of first-order sentences.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are 'categorical' if all of their models are isomorphic [Colyvan]
     Full Idea: A set of axioms is said to be 'categorical' if all models of the axioms in question are isomorphic.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 2.1.2)
     A reaction: The best example is the Peano Axioms, which are 'true up to isomorphism'. Set theory axioms are only 'quasi-isomorphic'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Ordinal numbers represent order relations [Colyvan]
     Full Idea: Ordinal numbers represent order relations.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.2.3 n17)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Intuitionists only accept a few safe infinities [Colyvan]
     Full Idea: For intuitionists, all but the smallest, most well-behaved infinities are rejected.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.3)
     A reaction: The intuitionist idea is to only accept what can be clearly constructed or proved.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
Infinitesimals were sometimes zero, and sometimes close to zero [Colyvan]
     Full Idea: The problem with infinitesimals is that in some places they behaved like real numbers close to zero but in other places they behaved like zero.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.2)
     A reaction: Colyvan gives an example, of differentiating a polynomial.
6. Mathematics / B. Foundations for Mathematics / 1. Foundations for Mathematics
Reducing real numbers to rationals suggested arithmetic as the foundation of maths [Colyvan]
     Full Idea: Given Dedekind's reduction of real numbers to sequences of rational numbers, and other known reductions in mathematics, it was tempting to see basic arithmetic as the foundation of mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 1.1.1)
     A reaction: The reduction is the famous Dedekind 'cut'. Nowadays theorists seem to be more abstract (Category Theory, for example) instead of reductionist.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / f. Mathematical induction
Transfinite induction moves from all cases, up to the limit ordinal [Colyvan]
     Full Idea: Transfinite inductions are inductive proofs that include an extra step to show that if the statement holds for all cases less than some limit ordinal, the statement also holds for the limit ordinal.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1 n11)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Most mathematical proofs are using set theory, but without saying so [Colyvan]
     Full Idea: Most mathematical proofs, outside of set theory, do not explicitly state the set theory being employed.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 7.1.1)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism say only 'up to isomorphism' matters because that is all there is to it [Colyvan]
     Full Idea: Structuralism is able to explain why mathematicians are typically only interested in describing the objects they study up to isomorphism - for that is all there is to describe.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If 'in re' structures relies on the world, does the world contain rich enough structures? [Colyvan]
     Full Idea: In re structuralism does not posit anything other than the kinds of structures that are in fact found in the world. ...The problem is that the world may not provide rich enough structures for the mathematics.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 3.1.2)
     A reaction: You can perceive a repeating pattern in the world, without any interest in how far the repetitions extend.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
14. Science / C. Induction / 6. Bayes's Theorem
Probability supports Bayesianism better as degrees of belief than as ratios of frequencies [Colyvan]
     Full Idea: Those who see probabilities as ratios of frequencies can't use Bayes's Theorem if there is no objective prior probability. Those who accept prior probabilities tend to opt for a subjectivist account, where probabilities are degrees of belief.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.8)
     A reaction: [compressed]
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Mathematics can reveal structural similarities in diverse systems [Colyvan]
     Full Idea: Mathematics can demonstrate structural similarities between systems (e.g. missing population periods and the gaps in the rings of Saturn).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
     A reaction: [Colyvan expounds the details of his two examples] It is these sorts of results that get people enthusiastic about the mathematics embedded in nature. A misunderstanding, I think.
14. Science / D. Explanation / 2. Types of Explanation / f. Necessity in explanations
Mathematics can show why some surprising events have to occur [Colyvan]
     Full Idea: Mathematics can show that under a broad range of conditions, something initially surprising must occur (e.g. the hexagonal structure of honeycomb).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 6.3.2)
14. Science / D. Explanation / 2. Types of Explanation / m. Explanation by proof
Reductio proofs do not seem to be very explanatory [Colyvan]
     Full Idea: One kind of proof that is thought to be unexplanatory is the 'reductio' proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: Presumably you generate a contradiction, but are given no indication of why the contradiction has arisen? Tracking back might reveal the source of the problem? Colyvan thinks reductio can be explanatory.
If inductive proofs hold because of the structure of natural numbers, they may explain theorems [Colyvan]
     Full Idea: It might be argued that any proof by induction is revealing the explanation of the theorem, namely, that it holds by virtue of the structure of the natural numbers.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
     A reaction: This is because induction characterises the natural numbers, in the Peano Axioms.
Can a proof that no one understands (of the four-colour theorem) really be a proof? [Colyvan]
     Full Idea: The proof of the four-colour theorem raises questions about whether a 'proof' that no one understands is a proof.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 9.1.6)
     A reaction: The point is that the theorem (that you can colour countries on a map with just four colours) was proved with the help of a computer.
Proof by cases (by 'exhaustion') is said to be unexplanatory [Colyvan]
     Full Idea: Another style of proof often cited as unexplanatory are brute-force methods such as proof by cases (or proof by exhaustion).
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.1)
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Mathematical generalisation is by extending a system, or by abstracting away from it [Colyvan]
     Full Idea: One type of generalisation in mathematics extends a system to go beyond what is was originally set up for; another kind involves abstracting away from some details in order to capture similarities between different systems.
     From: Mark Colyvan (Introduction to the Philosophy of Mathematics [2012], 5.2.2)
26. Natural Theory / C. Causation / 2. Types of cause
Causation is defined in terms of a single sequence, and constant conjunction is no part of it [Ducasse]
     Full Idea: The correct definition of the causal relation is to be framed in terms of one single case of sequence, and constancy of conjunction is therefore no part of it.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], Intro)
     A reaction: This is the thesis of Ducasse's paper. I immediately warm to it. I take constant conjunction to be a consequence and symptom of causation, not its nature. There is a classic ontology/epistemology confusion to be avoided here.
26. Natural Theory / C. Causation / 8. Particular Causation / a. Observation of causation
We see what is in common between causes to assign names to them, not to perceive them [Ducasse]
     Full Idea: The part of a generalization concerning what is common to one individual concrete event and the causes of certain other events of the same kind is involved in the mere assigning of a name to the cause and its effect, but not in the perceiving them.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §5)
     A reaction: A nice point, that we should keep distinct the recognition of a cause, and the assigning of a general name to it. Ducasse is claiming that we can directly perceive singular causation.
26. Natural Theory / C. Causation / 8. Particular Causation / c. Conditions of causation
Causes are either sufficient, or necessary, or necessitated, or contingent upon [Ducasse]
     Full Idea: There are four causal connections: an event is sufficient for another if it is its cause; an event is necessary for another if it is a condition for it; it is necessitated by another if it is an effect; it is contingent upon another if it is a resultant.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §2)
     A reaction: An event could be a condition for another without being necessary. He seems to have missed the indispensable aspect of a necessary condition.
When a brick and a canary-song hit a window, we ignore the canary if we are interested in the breakage [Ducasse]
     Full Idea: If a brick and the song of a canary strike a window, which breaks....we can truly say that the song of the canary had nothing to do with it, that is, in so far as what occurred is viewed merely as a case of breakage of window.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §5)
     A reaction: This is the germ of Davidson's view, that causation is entirely dependent on the mode of description, rather than being an actual feature of reality. If one was interested in the sound of the breakage, the canary would become relevant.
26. Natural Theory / C. Causation / 8. Particular Causation / d. Selecting the cause
A cause is a change which occurs close to the effect and just before it [Ducasse]
     Full Idea: The cause of the particular change K was such particular change C as alone occurred in the immediate environment of K immediately before.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §3)
     A reaction: The obvious immediately difficulty would be overdetermination, as when it rains while I am watering my garden. The other problem would coincidence, as when I clap my hands just before a bomb goes off.
26. Natural Theory / C. Causation / 9. General Causation / a. Constant conjunction
Recurrence is only relevant to the meaning of law, not to the meaning of cause [Ducasse]
     Full Idea: The supposition of recurrence is wholly irrelevant to the meaning of cause: that supposition is relevant only to the meaning of law.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §4)
     A reaction: This sounds plausible, especially if our notion of laws of nature is built up from a series of caused events. But we could just have an ontology of 'similar events', out of which we build laws, and 'causation' could drop out (á la Russell).
26. Natural Theory / C. Causation / 9. General Causation / b. Nomological causation
We are interested in generalising about causes and effects purely for practical purposes [Ducasse]
     Full Idea: We are interested in causes and effects primarily for practical purposes, which needs generalizations; so the interest of concrete individual facts of causation is chiefly an indirect one, as raw material for generalizations.
     From: Curt Ducasse (Nature and Observability of Causal Relations [1926], §6)
     A reaction: A nice explanation of why, if causation is fundamentally about single instances, people seem so interested in generalisations and laws. We want to predict, and we want to explain, and we want to intervene.