Combining Philosophers

All the ideas for Anaxarchus, Mark Sainsbury and Keith Hossack

unexpand these ideas     |    start again     |     specify just one area for these philosophers


41 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The Axiom of Choice is a non-logical principle of set-theory [Hossack]
     Full Idea: The Axiom of Choice seems better treated as a non-logical principle of set-theory.
     From: Keith Hossack (Plurals and Complexes [2000], 4 n8)
     A reaction: This reinforces the idea that set theory is not part of logic (and so pure logicism had better not depend on set theory).
The Axiom of Choice guarantees a one-one correspondence from sets to ordinals [Hossack]
     Full Idea: We cannot explicitly define one-one correspondence from the sets to the ordinals (because there is no explicit well-ordering of R). Nevertheless, the Axiom of Choice guarantees that a one-one correspondence does exist, even if we cannot define it.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Predicativism says only predicated sets exist [Hossack]
     Full Idea: Predicativists doubt the existence of sets with no predicative definition.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 02.3)
     A reaction: This would imply that sets which encounter paradoxes when they try to be predicative do not therefore exist. Surely you can have a set of random objects which don't fall under a single predicate?
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception has to appropriate Replacement, to justify the ordinals [Hossack]
     Full Idea: The iterative conception justifies Power Set, but cannot justify a satisfactory theory of von Neumann ordinals, so ZFC appropriates Replacement from NBG set theory.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: The modern approach to axioms, where we want to prove something so we just add an axiom that does the job.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size justifies Replacement, but then has to appropriate Power Set [Hossack]
     Full Idea: The limitation of size conception of sets justifies the axiom of Replacement, but cannot justify Power Set, so NBG set theory appropriates the Power Set axiom from ZFC.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 09.9)
     A reaction: Which suggests that the Power Set axiom is not as indispensable as it at first appears to be.
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Maybe we reduce sets to ordinals, rather than the other way round [Hossack]
     Full Idea: We might reduce sets to ordinal numbers, thereby reversing the standard set-theoretical reduction of ordinals to sets.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
     A reaction: He has demonstrated that there are as many ordinals as there are sets.
4. Formal Logic / G. Formal Mereology / 3. Axioms of Mereology
Extensional mereology needs two definitions and two axioms [Hossack]
     Full Idea: Extensional mereology defs: 'distinct' things have no parts in common; a 'fusion' has some things all of which are parts, with no further parts. Axioms: (transitivity) a part of a part is part of the whole; (sums) any things have a unique fusion.
     From: Keith Hossack (Plurals and Complexes [2000], 5)
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / d. and
The connective 'and' can have an order-sensitive meaning, as 'and then' [Hossack]
     Full Idea: The sentence connective 'and' also has an order-sensitive meaning, when it means something like 'and then'.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.4)
     A reaction: This is support the idea that orders are a feature of reality, just as much as possible concatenation. Relational predicates, he says, refer to series rather than to individuals. Nice point.
5. Theory of Logic / E. Structures of Logic / 6. Relations in Logic
'Before' and 'after' are not two relations, but one relation with two orders [Hossack]
     Full Idea: The reason the two predicates 'before' and 'after' are needed is not to express different relations, but to indicate its order. Since there can be difference of order without difference of relation, the nature of relations is not the source of order.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.3)
     A reaction: This point is to refute Russell's 1903 claim that order arises from the nature of relations. Hossack claims that it is ordered series which are basic. I'm inclined to agree with him.
5. Theory of Logic / F. Referring in Logic / 1. Naming / e. Empty names
It is best to say that a name designates iff there is something for it to designate [Sainsbury]
     Full Idea: It is better to say that 'For all x ("Hesperus" stands for x iff x = Hesperus)', than to say '"Hesperus" stands for Hesperus', since then the expression can be a name with no bearer (e.g. "Vulcan").
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: In cases where it is unclear whether the name actually designates something, it seems desirable that the name is at least allowed to function semantically.
5. Theory of Logic / F. Referring in Logic / 2. Descriptions / b. Definite descriptions
Definite descriptions may not be referring expressions, since they can fail to refer [Sainsbury]
     Full Idea: Almost everyone agrees that intelligible definite descriptions may lack a referent; this has historically been a reason for not counting them among referring expressions.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: One might compare indexicals such as 'I', which may be incapable of failing to refer when spoken. However 'look at that!' frequently fails to communicate reference.
Definite descriptions are usually rigid in subject, but not in predicate, position [Sainsbury]
     Full Idea: Definite descriptions used with referential intentions (usually in subject position) are normally rigid, ..but in predicate position they are normally not rigid, because there is no referential intention.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.5)
     A reaction: 'The man in the blue suit is the President' seems to fit, but 'The President is the head of state' doesn't. Seems roughly right, but language is always too complex for philosophers.
Plural definite descriptions pick out the largest class of things that fit the description [Hossack]
     Full Idea: If we extend the power of language with plural definite descriptions, these would pick out the largest class of things that fit the description.
     From: Keith Hossack (Plurals and Complexes [2000], 3)
5. Theory of Logic / G. Quantification / 6. Plural Quantification
Plural reference will refer to complex facts without postulating complex things [Hossack]
     Full Idea: It may be that plural reference gives atomism the resources to state complex facts without needing to refer to complex things.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: This seems the most interesting metaphysical implication of the possibility of plural quantification.
Plural reference is just an abbreviation when properties are distributive, but not otherwise [Hossack]
     Full Idea: If all properties are distributive, plural reference is just a handy abbreviation to avoid repetition (as in 'A and B are hungry', to avoid 'A is hungry and B is hungry'), but not all properties are distributive (as in 'some people surround a table').
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: The characteristic examples to support plural quantification involve collective activity and relations, which might be weeded out of our basic ontology, thus leaving singular quantification as sufficient.
A plural comprehension principle says there are some things one of which meets some condition [Hossack]
     Full Idea: Singular comprehension principles have a bad reputation, but the plural comprehension principle says that given a condition on individuals, there are some things such that something is one of them iff it meets the condition.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / d. Russell's paradox
Plural language can discuss without inconsistency things that are not members of themselves [Hossack]
     Full Idea: In a plural language we can discuss without fear of inconsistency the things that are not members of themselves.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
     A reaction: [see Hossack for details]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
The theory of the transfinite needs the ordinal numbers [Hossack]
     Full Idea: The theory of the transfinite needs the ordinal numbers.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
I take the real numbers to be just lengths [Hossack]
     Full Idea: I take the real numbers to be just lengths.
     From: Keith Hossack (Plurals and Complexes [2000], 9)
     A reaction: I love it. Real numbers are beginning to get on my nerves. They turn up to the party with no invitation and improperly dressed, and then refuse to give their names when challenged.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Transfinite ordinals are needed in proof theory, and for recursive functions and computability [Hossack]
     Full Idea: The transfinite ordinal numbers are important in the theory of proofs, and essential in the theory of recursive functions and computability. Mathematics would be incomplete without them.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], 10.1)
     A reaction: Hossack offers this as proof that the numbers are not human conceptual creations, but must exist beyond the range of our intellects. Hm.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
A plural language gives a single comprehensive induction axiom for arithmetic [Hossack]
     Full Idea: A language with plurals is better for arithmetic. Instead of a first-order fragment expressible by an induction schema, we have the complete truth with a plural induction axiom, beginning 'If there are some numbers...'.
     From: Keith Hossack (Plurals and Complexes [2000], 4)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
In arithmetic singularists need sets as the instantiator of numeric properties [Hossack]
     Full Idea: In arithmetic singularists need sets as the instantiator of numeric properties.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
Set theory is the science of infinity [Hossack]
     Full Idea: Set theory is the science of infinity.
     From: Keith Hossack (Plurals and Complexes [2000], 10)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Numbers are properties, not sets (because numbers are magnitudes) [Hossack]
     Full Idea: I propose that numbers are properties, not sets. Magnitudes are a kind of property, and numbers are magnitudes. …Natural numbers are properties of pluralities, positive reals of continua, and ordinals of series.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro)
     A reaction: Interesting! Since time can have a magnitude (three weeks) just as liquids can (three litres), it is not clear that there is a single natural property we can label 'magnitude'. Anything we can manage to measure has a magnitude.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
We can only mentally construct potential infinities, but maths needs actual infinities [Hossack]
     Full Idea: Numbers cannot be mental objects constructed by our own minds: there exists at most a potential infinity of mental constructions, whereas the axioms of mathematics require an actual infinity of numbers.
     From: Keith Hossack (Knowledge and the Philosophy of Number [2020], Intro 2)
     A reaction: Doubt this, but don't know enough to refute it. Actual infinities were a fairly late addition to maths, I think. I would think treating fictional complete infinities as real would be sufficient for the job. Like journeys which include imagined roads.
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
If 'red' is vague, then membership of the set of red things is vague, so there is no set of red things [Sainsbury]
     Full Idea: Sets have sharp boundaries, or are sharp objects; an object either definitely belongs to a set, or it does not. But 'red' is vague; there objects which are neither definitely red nor definitely not red. Hence there is no set of red things.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §2)
     A reaction: Presumably that will entail that there IS a set of things which can be described as 'definitely red'. If we describe something as 'definitely having a hint of red about it', will that put it in a set? In fact will the applicability of 'definitely' do?
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
We are committed to a 'group' of children, if they are sitting in a circle [Hossack]
     Full Idea: By Quine's test of ontological commitment, if some children are sitting in a circle, no individual child can sit in a circle, so a singular paraphrase will have us committed to a 'group' of children.
     From: Keith Hossack (Plurals and Complexes [2000], 2)
     A reaction: Nice of why Quine is committed to the existence of sets. Hossack offers plural quantification as a way of avoiding commitment to sets. But is 'sitting in a circle' a real property (in the Shoemaker sense)? I can sit in a circle without realising it.
7. Existence / E. Categories / 2. Categorisation
We should abandon classifying by pigeon-holes, and classify around paradigms [Sainsbury]
     Full Idea: We must reject the classical picture of classification by pigeon-holes, and think in other terms: classifying can be, and often is, clustering round paradigms.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §8)
     A reaction: His conclusion to a discussion of the problem of vagueness, where it is identified with concepts which have no boundaries. Pigeon-holes are a nice exemplar of the Enlightenment desire to get everything right. I prefer Aristotle's categories, Idea 3311.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague concepts are concepts without boundaries [Sainsbury]
     Full Idea: If a word is vague, there are or could be borderline cases, but non-vague expressions can also have borderline cases. The essence of vagueness is to be found in the idea vague concepts are concepts without boundaries.
     From: Mark Sainsbury (Concepts without Boundaries [1990], Intro)
     A reaction: He goes on to say that vague concepts are not embodied in clear cut sets, which is what gives us our notion of a boundary. So what is vague is 'membership'. You are either a member of a club or not, but when do you join the 'middle-aged'?
If concepts are vague, people avoid boundaries, can't spot them, and don't want them [Sainsbury]
     Full Idea: Vague concepts are boundaryless, ...and the manifestations are an unwillingness to draw any such boundaries, the impossibility of identifying such boundaries, and needlessness and even disutility of such boundaries.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §5)
     A reaction: People have a very fine-tuned notion of whether the sharp boundary of a concept is worth discussing. The interesting exception are legal people, who are often forced to find precision where everyone else hates it. Who deserves to inherit the big house?
Boundaryless concepts tend to come in pairs, such as child/adult, hot/cold [Sainsbury]
     Full Idea: Boundaryless concepts tend to come in systems of contraries: opposed pairs like child/adult, hot/cold, weak/strong, true/false, and complex systems of colour terms. ..Only a contrast with 'adult' will show what 'child' excludes.
     From: Mark Sainsbury (Concepts without Boundaries [1990], §5)
     A reaction: This might be expected. It all comes down to the sorites problem, of when one thing turns into something else. If it won't merge into another category, then presumably the isolated concept stays applicable (until reality terminates it? End of sheep..).
9. Objects / C. Structure of Objects / 5. Composition of an Object
Complex particulars are either masses, or composites, or sets [Hossack]
     Full Idea: Complex particulars are of at least three types: masses (which sum, of which we do not ask 'how many?' but 'how much?'); composite individuals (how many?, and summing usually fails); and sets (only divisible one way, unlike composites).
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: A composite pile of grains of sand gradually becomes a mass, and drops of water become 'water everywhere'. A set of people divides into individual humans, but redescribe the elements as the union of males and females?
The relation of composition is indispensable to the part-whole relation for individuals [Hossack]
     Full Idea: The relation of composition seems to be indispensable in a correct account of the part-whole relation for individuals.
     From: Keith Hossack (Plurals and Complexes [2000], 7)
     A reaction: This is the culmination of a critical discussion of mereology and ontological atomism. At first blush it doesn't look as if 'composition' has much chance of being a precise notion, and it will be plagued with vagueness.
9. Objects / C. Structure of Objects / 8. Parts of Objects / c. Wholes from parts
Leibniz's Law argues against atomism - water is wet, unlike water molecules [Hossack]
     Full Idea: We can employ Leibniz's Law against mereological atomism. Water is wet, but no water molecule is wet. The set of infinite numbers is infinite, but no finite number is infinite. ..But with plural reference the atomist can resist this argument.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: The idea of plural reference is to state plural facts without referring to complex things, which is interesting. The general idea is that we have atomism, and then all the relations, unities, identities etc. are in the facts, not in the things. I like it.
The fusion of five rectangles can decompose into more than five parts that are rectangles [Hossack]
     Full Idea: The fusion of five rectangles may have a decomposition into more than five parts that are rectangles.
     From: Keith Hossack (Plurals and Complexes [2000], 8)
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
18. Thought / A. Modes of Thought / 1. Thought
A thought can refer to many things, but only predicate a universal and affirm a state of affairs [Hossack]
     Full Idea: A thought can refer to a particular or a universal or a state of affairs, but it can predicate only a universal and it can affirm only a state of affairs.
     From: Keith Hossack (Plurals and Complexes [2000], 1)
     A reaction: Hossack is summarising Armstrong's view, which he is accepting. To me, 'thought' must allow for animals, unlike language. I think Hossack's picture is much too clear-cut. Do animals grasp universals? Doubtful. Can they predicate? Yes.
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
A new usage of a name could arise from a mistaken baptism of nothing [Sainsbury]
     Full Idea: A baptism which, perhaps through some radical mistake, is the baptism of nothing, is as good a propagator of a new use as a baptism of an object.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.3)
     A reaction: An obvious example might be the Loch Ness Monster. There is something intuitively wrong about saying that physical objects are actually part of linguistic meaning or reference. I am not a meaning!
19. Language / B. Reference / 5. Speaker's Reference
Even a quantifier like 'someone' can be used referentially [Sainsbury]
     Full Idea: A large range of expressions can be used with referential intentions, including quantifier phrases (as in 'someone has once again failed to close the door properly').
     From: Mark Sainsbury (The Essence of Reference [2006], 18.5)
     A reaction: This is the pragmatic aspect of reference, where it can be achieved by all sorts of means. But are quantifiers inherently referential in their semantic function? Some of each, it seems.
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Things are thought to have a function, even when they can't perform them [Sainsbury]
     Full Idea: On one common use of the notion of a function, something can possess a function which it does not, or even cannot, perform. A malformed heart is to pump blood, even if such a heart cannot in fact pump blood.
     From: Mark Sainsbury (The Essence of Reference [2006], 18.2)
     A reaction: One might say that the heart in a dead body had the function of pumping blood, but does it still have that function? Do I have the function of breaking the world 100 metres record, even though I can't quite manage it? Not that simple.
27. Natural Reality / C. Space / 2. Space
We could ignore space, and just talk of the shape of matter [Hossack]
     Full Idea: We might dispense with substantival space, and say that if the distribution of matter in space could have been different, that just means the matter of the Universe could have been shaped differently (with geometry as the science of shapes).
     From: Keith Hossack (Plurals and Complexes [2000], 9)