Combining Philosophers

All the ideas for Anaxarchus, R Keefe / P Smith and Kurt Gdel

unexpand these ideas     |    start again     |     specify just one area for these philosophers


58 ideas

2. Reason / A. Nature of Reason / 1. On Reason
For clear questions posed by reason, reason can also find clear answers [Gödel]
     Full Idea: I uphold the belief that for clear questions posed by reason, reason can also find clear answers.
     From: Kurt Gödel (works [1930]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.5
     A reaction: [written in 1961] This contradicts the implication normally taken from his much earlier Incompleteness Theorems.
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative Definitions refer to the totality to which the object itself belongs [Gödel]
     Full Idea: Impredicative Definitions are definitions of an object by reference to the totality to which the object itself (and perhaps also things definable only in terms of that object) belong.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], n 13)
3. Truth / F. Semantic Truth / 1. Tarski's Truth / a. Tarski's truth definition
Prior to Gödel we thought truth in mathematics consisted in provability [Gödel, by Quine]
     Full Idea: Gödel's proof wrought an abrupt turn in the philosophy of mathematics. We had supposed that truth, in mathematics, consisted in provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Willard Quine - Forward to Gödel's Unpublished
     A reaction: This explains the crisis in the early 1930s, which Tarski's theory appeared to solve.
4. Formal Logic / C. Predicate Calculus PC / 3. Completeness of PC
Gödel proved the completeness of first order predicate logic in 1930 [Gödel, by Walicki]
     Full Idea: Gödel proved the completeness of first order predicate logic in his doctoral dissertation of 1930.
     From: report of Kurt Gödel (Completeness of Axioms of Logic [1930]) by Michal Walicki - Introduction to Mathematical Logic History E.2.2
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
S5 collapses iterated modalities (◊□P→□P, and ◊◊P→◊P) [Keefe/Smith]
     Full Idea: S5 collapses iterated modalities (so ◊□P → □P, and ◊◊P → ◊P).
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §5)
     A reaction: It is obvious why this might be controversial, and there seems to be a general preference for S4. There may be confusions of epistemic and ontic (and even semantic?) possibilities within a single string of modalities.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Gödel show that the incompleteness of set theory was a necessity [Gödel, by Hallett,M]
     Full Idea: Gödel's incompleteness results of 1931 show that all axiom systems precise enough to satisfy Hilbert's conception are necessarily incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Michael Hallett - Introduction to Zermelo's 1930 paper p.1215
     A reaction: [Hallett italicises 'necessarily'] Hilbert axioms have to be recursive - that is, everything in the system must track back to them.
We perceive the objects of set theory, just as we perceive with our senses [Gödel]
     Full Idea: We have something like perception of the objects of set theory, shown by the axioms forcing themselves on us as being true. I don't see why we should have less confidence in this kind of perception (i.e. mathematical intuition) than in sense perception.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.483), quoted by Michčle Friend - Introducing the Philosophy of Mathematics 2.4
     A reaction: A famous strong expression of realism about the existence of sets. It is remarkable how the ingredients of mathematics spread themselves before the mind like a landscape, inviting journeys - but I think that just shows how minds cope with abstractions.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / o. Axiom of Constructibility V = L
Gödel proved the classical relative consistency of the axiom V = L [Gödel, by Putnam]
     Full Idea: Gödel proved the classical relative consistency of the axiom V = L (which implies the axiom of choice and the generalized continuum hypothesis). This established the full independence of the continuum hypothesis from the other axioms.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by Hilary Putnam - Mathematics without Foundations
     A reaction: Gödel initially wanted to make V = L an axiom, but the changed his mind. Maddy has lots to say on the subject.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
In simple type theory the axiom of Separation is better than Reducibility [Gödel, by Linsky,B]
     Full Idea: In the superior realist and simple theory of types, the place of the axiom of reducibility is not taken by the axiom of classes, Zermelo's Aussonderungsaxiom.
     From: report of Kurt Gödel (Russell's Mathematical Logic [1944], p.140-1) by Bernard Linsky - Russell's Metaphysical Logic 6.1 n3
     A reaction: This is Zermelo's Axiom of Separation, but that too is not an axiom of standard ZFC.
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Gödel proved that first-order logic is complete, and second-order logic incomplete [Gödel, by Dummett]
     Full Idea: Gödel proved the completeness of standard formalizations of first-order logic, including Frege's original one. However, an implication of his famous theorem on the incompleteness of arithmetic is that second-order logic is incomplete.
     From: report of Kurt Gödel (works [1930]) by Michael Dummett - The Philosophy of Mathematics 3.1
     A reaction: This must mean that it is impossible to characterise arithmetic fully in terms of first-order logic. In which case we can only characterize the features of abstract reality in general if we employ an incomplete system. We're doomed.
5. Theory of Logic / A. Overview of Logic / 8. Logic of Mathematics
Mathematical Logic is a non-numerical branch of mathematics, and the supreme science [Gödel]
     Full Idea: 'Mathematical Logic' is a precise and complete formulation of formal logic, and is both a section of mathematics covering classes, relations, symbols etc, and also a science prior to all others, with ideas and principles underlying all sciences.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.447)
     A reaction: He cites Leibniz as the ancestor. In this database it is referred to as 'theory of logic', as 'mathematical' seems to be simply misleading. The principles of the subject are standardly applied to mathematical themes.
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
Reference to a totality need not refer to a conjunction of all its elements [Gödel]
     Full Idea: One may, on good grounds, deny that reference to a totality necessarily implies reference to all single elements of it or, in other words, that 'all' means the same as an infinite logical conjunction.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.455)
5. Theory of Logic / I. Semantics of Logic / 2. Formal Truth
Originally truth was viewed with total suspicion, and only demonstrability was accepted [Gödel]
     Full Idea: At that time (c.1930) a concept of objective mathematical truth as opposed to demonstrability was viewed with greatest suspicion and widely rejected as meaningless.
     From: Kurt Gödel (works [1930]), quoted by Peter Smith - Intro to Gödel's Theorems 28.2
     A reaction: [quoted from a letter] This is the time of Ramsey's redundancy account, and before Tarski's famous paper of 1933. It is also the high point of Formalism, associated with Hilbert.
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The limitations of axiomatisation were revealed by the incompleteness theorems [Gödel, by Koellner]
     Full Idea: The inherent limitations of the axiomatic method were first brought to light by the incompleteness theorems.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Koellner - On the Question of Absolute Undecidability 1.1
5. Theory of Logic / K. Features of Logics / 2. Consistency
Second Incompleteness: nice theories can't prove their own consistency [Gödel, by Smith,P]
     Full Idea: Second Incompleteness Theorem: roughly, nice theories that include enough basic arithmetic can't prove their own consistency.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.5
     A reaction: On the face of it, this sounds less surprising than the First Theorem. Philosophers have often noticed that it seems unlikely that you could use reason to prove reason, as when Descartes just relies on 'clear and distinct ideas'.
5. Theory of Logic / K. Features of Logics / 3. Soundness
If soundness can't be proved internally, 'reflection principles' can be added to assert soundness [Gödel, by Halbach/Leigh]
     Full Idea: Gödel showed PA cannot be proved consistent from with PA. But 'reflection principles' can be added, which are axioms partially expressing the soundness of PA, by asserting what is provable. A Global Reflection Principle asserts full soundness.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Halbach,V/Leigh,G.E. - Axiomatic Theories of Truth (2013 ver) 1.2
     A reaction: The authors point out that this needs a truth predicate within the language, so disquotational truth won't do, and there is a motivation for an axiomatic theory of truth.
5. Theory of Logic / K. Features of Logics / 5. Incompleteness
Gödel's Theorems did not refute the claim that all good mathematical questions have answers [Gödel, by Koellner]
     Full Idea: Gödel was quick to point out that his original incompleteness theorems did not produce instances of absolute undecidability and hence did not undermine Hilbert's conviction that for every precise mathematical question there is a discoverable answer.
     From: report of Kurt Gödel (works [1930]) by Peter Koellner - On the Question of Absolute Undecidability Intro
     A reaction: The normal simplistic view among philosophes is that Gödel did indeed decisively refute the optimistic claims of Hilbert. Roughly, whether Hilbert is right depends on which axioms of set theory you adopt.
The undecidable sentence can be decided at a 'higher' level in the system [Gödel]
     Full Idea: My undecidable arithmetical sentence ...is not at all absolutely undecidable; rather, one can always pass to 'higher' systems in which the sentence in question is decidable.
     From: Kurt Gödel (On Formally Undecidable Propositions [1931]), quoted by Peter Koellner - On the Question of Absolute Undecidability 1.1
     A reaction: [a 1931 MS] He says the reals are 'higher' than the naturals, and the axioms of set theory are higher still. The addition of a truth predicate is part of what makes the sentence become decidable.
Gödel's First Theorem sabotages logicism, and the Second sabotages Hilbert's Programme [Smith,P on Gödel]
     Full Idea: Where Gödel's First Theorem sabotages logicist ambitions, the Second Theorem sabotages Hilbert's Programme.
     From: comment on Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 36
     A reaction: Neo-logicism (Crispin Wright etc.) has a strategy for evading the First Theorem.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
A logical system needs a syntactical survey of all possible expressions [Gödel]
     Full Idea: In order to be sure that new expression can be translated into expressions not containing them, it is necessary to have a survey of all possible expressions, and this can be furnished only by syntactical considerations.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.448)
     A reaction: [compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / a. Set theory paradoxes
Set-theory paradoxes are no worse than sense deception in physics [Gödel]
     Full Idea: The set-theoretical paradoxes are hardly any more troublesome for mathematics than deceptions of the senses are for physics.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], p.271), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 03.4
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
There can be no single consistent theory from which all mathematical truths can be derived [Gödel, by George/Velleman]
     Full Idea: Gödel's far-reaching work on the nature of logic and formal systems reveals that there can be no single consistent theory from which all mathematical truths can be derived.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.8
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The generalized Continuum Hypothesis asserts a discontinuity in cardinal numbers [Gödel]
     Full Idea: The generalized Continuum Hypothesis says that there exists no cardinal number between the power of any arbitrary set and the power of the set of its subsets.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
The Continuum Hypothesis is not inconsistent with the axioms of set theory [Gödel, by Clegg]
     Full Idea: Gödel proved that the Continuum Hypothesis was not inconsistent with the axioms of set theory.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
If set theory is consistent, we cannot refute or prove the Continuum Hypothesis [Gödel, by Hart,WD]
     Full Idea: Gödel proved that (if set theory is consistent) we cannot refute the continuum hypothesis, and Cohen proved that (if set theory is consistent) we cannot prove it either.
     From: report of Kurt Gödel (What is Cantor's Continuum Problem? [1964]) by William D. Hart - The Evolution of Logic 10
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gödel eventually hoped for a generalised completeness theorem leaving nothing undecidable [Gödel, by Koellner]
     Full Idea: Eventually Gödel ...expressed the hope that there might be a generalised completeness theorem according to which there are no absolutely undecidable sentences.
     From: report of Kurt Gödel (works [1930]) by Peter Koellner - On the Question of Absolute Undecidability Intro
     A reaction: This comes as a bit of a shock to those who associate him with the inherent undecidability of reality.
The real reason for Incompleteness in arithmetic is inability to define truth in a language [Gödel]
     Full Idea: The concept of truth of sentences in a language cannot be defined in the language. This is the true reason for the existence of undecidable propositions in the formal systems containing arithmetic.
     From: Kurt Gödel (works [1930]), quoted by Peter Smith - Intro to Gödel's Theorems 21.6
     A reaction: [from a letter by Gödel] So they key to Incompleteness is Tarski's observations about truth. Highly significant, as I take it.
First Incompleteness: arithmetic must always be incomplete [Gödel, by Smith,P]
     Full Idea: First Incompleteness Theorem: any properly axiomatised and consistent theory of basic arithmetic must remain incomplete, whatever our efforts to complete it by throwing further axioms into the mix.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 1.2
     A reaction: This is because it is always possible to formulate a well-formed sentence which is not provable within the theory.
Gödel showed that arithmetic is either incomplete or inconsistent [Gödel, by Rey]
     Full Idea: Gödel's theorem states that either arithmetic is incomplete, or it is inconsistent.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.7
Arithmetical truth cannot be fully and formally derived from axioms and inference rules [Gödel, by Nagel/Newman]
     Full Idea: The vast continent of arithmetical truth cannot be brought into systematic order by laying down a fixed set of axioms and rules of inference from which every true mathematical statement can be formally derived. For some this was a shocking revelation.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by E Nagel / JR Newman - Gödel's Proof VII.C
     A reaction: Good news for philosophy, I'd say. The truth cannot be worked out by mechanical procedures, so it needs the subtle and intuitive intelligence of your proper philosopher (Parmenides is the role model) to actually understand reality.
Gödel's Second says that semantic consequence outruns provability [Gödel, by Hanna]
     Full Idea: Gödel's Second Incompleteness Theorem says that true unprovable sentences are clearly semantic consequences of the axioms in the sense that they are necessarily true if the axioms are true. So semantic consequence outruns provability.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Robert Hanna - Rationality and Logic 5.3
First Incompleteness: a decent consistent system is syntactically incomplete [Gödel, by George/Velleman]
     Full Idea: First Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S is syntactically incomplete.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Gödel found a single sentence, effectively saying 'I am unprovable in S', which is neither provable nor refutable in S.
Second Incompleteness: a decent consistent system can't prove its own consistency [Gödel, by George/Velleman]
     Full Idea: Second Incompleteness Theorem: If S is a sufficiently powerful formal system, then if S is consistent then S cannot prove its own consistency
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This seems much less surprising than the First Theorem (though it derives from it). It was always kind of obvious that you couldn't use reason to prove that reason works (see, for example, the Cartesian Circle).
There is a sentence which a theory can show is true iff it is unprovable [Gödel, by Smith,P]
     Full Idea: The original Gödel construction gives us a sentence that a theory shows is true if and only if it satisfies the condition of being unprovable-in-that-theory.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Peter Smith - Intro to Gödel's Theorems 20.5
'This system can't prove this statement' makes it unprovable either way [Gödel, by Clegg]
     Full Idea: An approximation of Gödel's Theorem imagines a statement 'This system of mathematics can't prove this statement true'. If the system proves the statement, then it can't prove it. If the statement can't prove the statement, clearly it still can't prove it.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Brian Clegg - Infinity: Quest to Think the Unthinkable Ch.15
     A reaction: Gödel's contribution to this simple idea seems to be a demonstration that formal arithmetic is capable of expressing such a statement.
Some arithmetical problems require assumptions which transcend arithmetic [Gödel]
     Full Idea: It has turned out that the solution of certain arithmetical problems requires the use of assumptions essentially transcending arithmetic.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.449)
     A reaction: A nice statement of the famous result, from the great man himself, in the plainest possible English.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematical objects are as essential as physical objects are for perception [Gödel]
     Full Idea: Classes and concepts may be conceived of as real objects, ..and are as necessary to obtain a satisfactory system of mathematics as physical bodies are necessary for a satisfactory theory of our sense perceptions, with neither case being about 'data'.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.456)
     A reaction: Note that while he thinks real objects are essential for mathematics, be may not be claiming the same thing for our knowledge of logic. If logic contains no objects, then how could mathematics be reduced to it, as in logicism?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Basic mathematics is related to abstract elements of our empirical ideas [Gödel]
     Full Idea: Evidently the 'given' underlying mathematics is closely related to the abstract elements contained in our empirical ideas.
     From: Kurt Gödel (What is Cantor's Continuum Problem? [1964], Suppl)
     A reaction: Yes! The great modern mathematical platonist says something with which I can agree. He goes on to hint at a platonic view of the structure of the empirical world, but we'll let that pass.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / d. Predicativism
Impredicative definitions are admitted into ordinary mathematics [Gödel]
     Full Idea: Impredicative definitions are admitted into ordinary mathematics.
     From: Kurt Gödel (Russell's Mathematical Logic [1944], p.464)
     A reaction: The issue is at what point in building an account of the foundations of mathematics (if there be such, see Putnam) these impure definitions should be ruled out.
Realists are happy with impredicative definitions, which describe entities in terms of other existing entities [Gödel, by Shapiro]
     Full Idea: Gödel defended impredicative definitions on grounds of ontological realism. From that perspective, an impredicative definition is a description of an existing entity with reference to other existing entities.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Stewart Shapiro - Thinking About Mathematics 5.3
     A reaction: This is why constructivists must be absolutely precise about definition, where realists only have to do their best. Compare building a car with painting a landscape.
7. Existence / D. Theories of Reality / 10. Vagueness / b. Vagueness of reality
Objects such as a cloud or Mount Everest seem to have fuzzy boundaries in nature [Keefe/Smith]
     Full Idea: A common intuition is that a vague object has indeterminate or fuzzy spatio-temporal boundaries, such as a cloud. Mount Everest can only have arbitrary boundaries placed around it, so in nature it must have fuzzy boundaries.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §5)
     A reaction: We would have to respond by questioning whether Everest counts precisely as an 'object'. At the microscopic or subatomic level it seems that virtually everything has fuzzy boundaries. Maybe boundaries don't really exist.
7. Existence / D. Theories of Reality / 10. Vagueness / c. Vagueness as ignorance
If someone is borderline tall, no further information is likely to resolve the question [Keefe/Smith]
     Full Idea: If Tek is borderline tall, the unclarity does not seem to be epistemic, because no amount of further information about his exact height (or the heights of others) could help us decide whether he is tall.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: One should add also that information about social conventions or conventions about the usage of the word 'tall' will not help either. It seems fairly obvious that God would not know whether Tek is tall, so the epistemic view is certainly counterintuitive.
The simplest approach, that vagueness is just ignorance, retains classical logic and semantics [Keefe/Smith]
     Full Idea: The simplest approach to vagueness is to retain classical logic and semantics. Borderline cases are either true or false, but we don't know which, and, despite appearances, vague predicates have well-defined extensions. Vagueness is ignorance.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: It seems to me that you must have a rather unhealthy attachment to the logicians' view of the world to take this line. It is the passion of the stamp collector, to want everything in sets, with neatly labelled properties, and inference lines marked out.
The epistemic view of vagueness must explain why we don't know the predicate boundary [Keefe/Smith]
     Full Idea: A key question for the epistemic view of vagueness is: why are we ignorant of the facts about where the boundaries of vague predicates lie?
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §2)
     A reaction: Presumably there is a range of answers, from laziness, to inability to afford the instruments, to limitations on human perception. At the limit, with physical objects, how do we tell whether it is us or the object which is afflicted with vagueness?
7. Existence / D. Theories of Reality / 10. Vagueness / f. Supervaluation for vagueness
Supervaluationism keeps true-or-false where precision can be produced, but not otherwise [Keefe/Smith]
     Full Idea: The supervaluationist view of vagueness is that 'tall' comes out true or false on all the ways in which we can make 'tall' precise. There is a gap for borderline cases, but 'tall or not-tall' is still true wherever you draw a boundary.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: [Kit Fine is the spokesperson for this; it preserves classical logic, but not semantics] This doesn't seem to solve the problem of vagueness, but it does (sort of) save the principle of excluded middle.
Vague statements lack truth value if attempts to make them precise fail [Keefe/Smith]
     Full Idea: The supervaluationist view of vagueness proposes that a sentence is true iff it is true on all precisifications, false iff false on all precisifications, and neither true nor false otherwise.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: This seems to be just a footnote to the Russell/Unger view, that logic works if the proposition is precise, but otherwise it is either just the mess of ordinary life, or the predicate doesn't apply at all.
Some of the principles of classical logic still fail with supervaluationism [Keefe/Smith]
     Full Idea: Supervaluationist logic (now with a 'definite' operator D) fails to preserve certain classical principles about consequence and rules of inference. For example, reduction ad absurdum, contraposition, the deduction theorem and argument by cases.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: The aim of supervaluationism was to try to preserve some classical logic, especially the law of excluded middle, in the face of problems of vagueness. More drastic views, like treating vagueness as irrelevant to logic, or the epistemic view, do better.
The semantics of supervaluation (e.g. disjunction and quantification) is not classical [Keefe/Smith]
     Full Idea: The semantics of supervaluational views is not classical. A disjunction can be true without either of its disjuncts being true, and an existential quantification can be true without any of its substitution instances being true.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: There is a vaguely plausible story here (either red or orange, but not definitely one nor tother; there exists an x, but which x it is is undecidable), but I think I will vote for this all being very very wrong.
Supervaluation misunderstands vagueness, treating it as a failure to make things precise [Keefe/Smith]
     Full Idea: Why should we think vague language is explained away by how things would be if it were made precise? Supervaluationism misrepresents vague expressions, as vague only because we have not bothered to make them precise.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §3)
     A reaction: The theory still leaves a gap where vagueness is ineradicable, so the charge doesn't seem quite fair. Logicians always yearn for precision, but common speech enjoys wallowing in a sea of easy-going vagueness, which works fine.
7. Existence / D. Theories of Reality / 10. Vagueness / g. Degrees of vagueness
A third truth-value at borderlines might be 'indeterminate', or a value somewhere between 0 and 1 [Keefe/Smith]
     Full Idea: One approach to predications in borderline cases is to say that they have a third truth value - 'neutral', 'indeterminate' or 'indefinite', leading to a three-valued logic. Or a degree theory, such as fuzzy logic, with infinite values between 0 and 1.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: This looks more like a strategy for computer programmers than for metaphysicians, as it doesn't seem to solve the difficulty of things to which no one can quite assign any value at all. Sometimes you can't be sure if an entity is vague.
People can't be placed in a precise order according to how 'nice' they are [Keefe/Smith]
     Full Idea: There is no complete ordering of people by niceness, and two people could be both fairly nice, nice to intermediate degrees, while there is no fact of the matter about who is the nicer.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §4)
     A reaction: This is a difficulty if you are trying to decide vague predicates by awarding them degrees of truth. Attempts to place a precise value on 'nice' seem to miss the point, even more than utilitarian attempts to score happiness.
If truth-values for vagueness range from 0 to 1, there must be someone who is 'completely tall' [Keefe/Smith]
     Full Idea: Many-valued theories still seem to have a sharp boundary between sentences taking truth-value 1 and those taking value less than 1. So there is a last man in our sorites series who counts as 'completely tall'.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §4)
     A reaction: Lovely. Completely nice, totally red, perfectly childlike, an utter mountain, one hundred per cent amused. The enterprise seems to have the same implausibility found in Bayesian approaches to assessing evidence.
How do we decide if my coat is red to degree 0.322 or 0.321? [Keefe/Smith]
     Full Idea: What could determine which is the correct function, settling that my coat is red to degree 0.322 rather than 0.321?
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §4)
     A reaction: It is not just the uncertainty of placing the coat on the scale. The two ends of the scale have all the indeterminacy of being red rather than orange (or, indeed, pink). You are struggling to find a spot on the ruler, when the ruler is placed vaguely.
9. Objects / B. Unity of Objects / 3. Unity Problems / e. Vague objects
Vague predicates involve uncertain properties, uncertain objects, and paradoxes of gradual change [Keefe/Smith]
     Full Idea: Three interrelated features of vague predicates such as 'tall', 'red', 'heap', 'child' are that they have borderline cases (application is uncertain), they lack well-defined extensions (objects are uncertain), and they're susceptible to sorites paradoxes.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: The issue will partly depend on what you think an object is: choose from bundles of properties, total denial, essential substance, or featureless substance with properties. The fungal infection of vagueness could creep in at any point, even the words.
Many vague predicates are multi-dimensional; 'big' involves height and volume; heaps include arrangement [Keefe/Smith]
     Full Idea: Many vague predicates are multi-dimensional. 'Big' of people depends on both height and volume; 'nice' does not even have clear dimensions; whether something is a 'heap' depends both the number of grains and their arrangement.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: Anyone who was hoping for a nice tidy theory for this problem should abandon hope at this point. Huge numbers of philosophical problems can be simplified by asking 'what exactly do you mean here?' (e.g. tall or bulky?).
If there is a precise borderline area, that is not a case of vagueness [Keefe/Smith]
     Full Idea: If a predicate G has a sharply-bounded set of cases falling in between the positive and negative, this shows that merely having borderline cases is not sufficient for vagueness.
     From: R Keefe / P Smith (Intro: Theories of Vagueness [1997], §1)
     A reaction: Thus you might have 'pass', 'fail' and 'take the test again'. But there seem to be two cases in the border area: will decide later, and decision seems impossible. And the sharp boundaries may be quite arbitrary.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
17. Mind and Body / C. Functionalism / 2. Machine Functionalism
Basic logic can be done by syntax, with no semantics [Gödel, by Rey]
     Full Idea: Gödel in his completeness theorem for first-order logic showed that a certain set of syntactically specifiable rules was adequate to capture all first-order valid arguments. No semantics (e.g. reference, truth, validity) was necessary.
     From: report of Kurt Gödel (On Formally Undecidable Propositions [1931]) by Georges Rey - Contemporary Philosophy of Mind 8.2
     A reaction: This implies that a logic machine is possible, but we shouldn't raise our hopes for proper rationality. Validity can be shown for purely algebraic arguments, but rationality requires truth as well as validity, and that needs propositions and semantics.