Combining Philosophers

All the ideas for Anaxarchus, Shaughan Lavine and Allan Gibbard

unexpand these ideas     |    start again     |     specify just one area for these philosophers


48 ideas

4. Formal Logic / F. Set Theory ST / 1. Set Theory
Second-order set theory just adds a version of Replacement that quantifies over functions [Lavine]
     Full Idea: Second-order set theory is just like first-order set-theory, except that we use the version of Replacement with a universal second-order quantifier over functions from set to sets.
     From: Shaughan Lavine (Understanding the Infinite [1994], VII.4)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
An 'upper bound' is the greatest member of a subset; there may be several of these, so there is a 'least' one [Lavine]
     Full Idea: A member m of M is an 'upper bound' of a subset N of M if m is not less than any member of N. A member m of M is a 'least upper bound' of N if m is an upper bound of N such that if l is any other upper bound of N, then m is less than l.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: [if you don't follow that, you'll have to keep rereading it till you do]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / a. Types of set
Collections of things can't be too big, but collections by a rule seem unlimited in size [Lavine]
     Full Idea: Since combinatorial collections are enumerated, some multiplicities may be too large to be gathered into combinatorial collections. But the size of a multiplicity seems quite irrelevant to whether it forms a logical connection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Those who reject infinite collections also want to reject the Axiom of Choice [Lavine]
     Full Idea: Many of those who are skeptical about the existence of infinite combinatorial collections would want to doubt or deny the Axiom of Choice.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
The Power Set is just the collection of functions from one collection to another [Lavine]
     Full Idea: The Power Set is just he codification of the fact that the collection of functions from a mathematical collection to a mathematical collection is itself a mathematical collection that can serve as a domain of mathematical study.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Replacement was immediately accepted, despite having very few implications [Lavine]
     Full Idea: The Axiom of Replacement (of Skolem and Fraenkel) was remarkable for its universal acceptance, though it seemed to have no consequences except for the properties of the higher reaches of the Cantorian infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / i. Axiom of Foundation VIII
Foundation says descending chains are of finite length, blocking circularity, or ungrounded sets [Lavine]
     Full Idea: The Axiom of Foundation (Zermelo 1930) says 'Every (descending) chain in which each element is a member of the previous one is of finite length'. ..This forbids circles of membership, or ungrounded sets. ..The iterative conception gives this centre stage.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.4)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Pure collections of things obey Choice, but collections defined by a rule may not [Lavine]
     Full Idea: Combinatorial collections (defined just by the members) obviously obey the Axiom of Choice, while it is at best dubious whether logical connections (defined by a rule) do.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
The controversy was not about the Axiom of Choice, but about functions as arbitrary, or given by rules [Lavine]
     Full Idea: The controversy was not about Choice per se, but about the correct notion of function - between advocates of taking mathematics to be about arbitrary functions and advocates of taking it to be about functions given by rules.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / c. Logical sets
The 'logical' notion of class has some kind of definition or rule to characterise the class [Lavine]
     Full Idea: The Peano-Russell notion of class is the 'logical' notion, where each collection is associated with some kind of definition or rule that characterises the members of the collection.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.1)
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception of set wasn't suggested until 1947 [Lavine]
     Full Idea: The iterative conception of set was not so much as suggested, let alone advocated by anyone, until 1947.
     From: Shaughan Lavine (Understanding the Infinite [1994], I)
The iterative conception needs the Axiom of Infinity, to show how far we can iterate [Lavine]
     Full Idea: The iterative conception of sets does not tell us how far to iterate, and so we must start with an Axiom of Infinity. It also presupposes the notion of 'transfinite iteration'.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
The iterative conception doesn't unify the axioms, and has had little impact on mathematical proofs [Lavine]
     Full Idea: The iterative conception does not provide a conception that unifies the axioms of set theory, ...and it has had very little impact on what theorems can be proved.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
     A reaction: He says he would like to reject the iterative conception, but it may turn out that Foundation enables new proofs in mathematics (though it hasn't so far).
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size: if it's the same size as a set, it's a set; it uses Replacement [Lavine]
     Full Idea: Limitation of Size has it that if a collection is the same size as a set, then it is a set. The Axiom of Replacement is characteristic of limitation of size.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.5)
4. Formal Logic / F. Set Theory ST / 6. Ordering in Sets
A collection is 'well-ordered' if there is a least element, and all of its successors can be identified [Lavine]
     Full Idea: A collection M is 'well-ordered' by a relation < if < linearly orders M with a least element, and every subset of M that has an upper bound not in it has an immediate successor.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Second-order logic presupposes a set of relations already fixed by the first-order domain [Lavine]
     Full Idea: The distinctive feature of second-order logic is that it presupposes that, given a domain, there is a fact of the matter about what the relations on it are, so that the range of the second-order quantifiers is fixed as soon as the domain is fixed.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
     A reaction: This sounds like a rather large assumption, which is open to challenge. I am not sure whether it was the basis of Quine's challenge to second-order logic. He seems to have disliked its vagueness, because it didn't stick with 'objects'.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Mathematical proof by contradiction needs the law of excluded middle [Lavine]
     Full Idea: The Law of Excluded Middle is (part of) the foundation of the mathematical practice of employing proofs by contradiction.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: This applies in a lot of logic, as well as in mathematics. Come to think of it, it applies in Sudoku.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is nowadays (thanks to set theory) regarded as the study of structure, not of quantity [Lavine]
     Full Idea: Mathematics is today thought of as the study of abstract structure, not the study of quantity. That point of view arose directly out of the development of the set-theoretic notion of abstract structure.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.2)
     A reaction: It sounds as if Structuralism, which is a controversial view in philosophy, is a fait accompli among mathematicians.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Every rational number, unlike every natural number, is divisible by some other number [Lavine]
     Full Idea: One reason to introduce the rational numbers is that it simplifes the theory of division, since every rational number is divisible by every nonzero rational number, while the analogous statement is false for the natural numbers.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.3)
     A reaction: That is, with rations every division operation has an answer.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
For the real numbers to form a set, we need the Continuum Hypothesis to be true [Lavine]
     Full Idea: The chief importance of the Continuum Hypothesis for Cantor (I believe) was that it would show that the real numbers form a set, and hence that they were encompassed by his theory.
     From: Shaughan Lavine (Understanding the Infinite [1994], IV.2)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / h. Reals from Cauchy
Cauchy gave a necessary condition for the convergence of a sequence [Lavine]
     Full Idea: The Cauchy convergence criterion for a sequence: the sequence S0,S1,... has a limit if |S(n+r) - S(n)| is less than any given quantity for every value of r and sufficiently large values of n. He proved this necessary, but not sufficient.
     From: Shaughan Lavine (Understanding the Infinite [1994], 2.5)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / i. Reals from cuts
The two sides of the Cut are, roughly, the bounding commensurable ratios [Lavine]
     Full Idea: Roughly speaking, the upper and lower parts of the Dedekind cut correspond to the commensurable ratios greater than and less than a given incommensurable ratio.
     From: Shaughan Lavine (Understanding the Infinite [1994], II.6)
     A reaction: Thus there is the problem of whether the contents of the gap are one unique thing, or many.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Counting results in well-ordering, and well-ordering makes counting possible [Lavine]
     Full Idea: Counting a set produces a well-ordering of it. Conversely, if one has a well-ordering of a set, one can count it by following the well-ordering.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Cantor didn't mean that you could literally count the set, only in principle.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
The theory of infinity must rest on our inability to distinguish between very large sizes [Lavine]
     Full Idea: The indiscernibility of indefinitely large sizes will be a critical part of the theory of indefinitely large sizes.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
The infinite is extrapolation from the experience of indefinitely large size [Lavine]
     Full Idea: My proposal is that the concept of the infinite began with an extrapolation from the experience of indefinitely large size.
     From: Shaughan Lavine (Understanding the Infinite [1994], VIII.2)
     A reaction: I think it might be better to talk of an 'abstraction' than an 'extrapolition', since the latter is just more of the same, which doesn't get you to concept. Lavine spends 100 pages working out his proposal.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / c. Potential infinite
The intuitionist endorses only the potential infinite [Lavine]
     Full Idea: The intuitionist endorse the actual finite, but only the potential infinite.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.2)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
'Aleph-0' is cardinality of the naturals, 'aleph-1' the next cardinal, 'aleph-ω' the ω-th cardinal [Lavine]
     Full Idea: The symbol 'aleph-nought' denotes the cardinal number of the set of natural numbers. The symbol 'aleph-one' denotes the next larger cardinal number. 'Aleph-omega' denotes the omega-th cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.3)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / h. Ordinal infinity
Ordinals are basic to Cantor's transfinite, to count the sets [Lavine]
     Full Idea: The ordinals are basic because the transfinite sets are those that can be counted, or (equivalently for Cantor), those that can be numbered by an ordinal or are well-ordered.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.4)
     A reaction: Lavine observes (p.55) that for Cantor 'countable' meant 'countable by God'!
Paradox: the class of all ordinals is well-ordered, so must have an ordinal as type - giving a bigger ordinal [Lavine]
     Full Idea: The paradox of the largest ordinal (the 'Burali-Forti') is that the class of all ordinal numbers is apparently well-ordered, and so it has an ordinal number as order type, which must be the largest ordinal - but all ordinals can be increased by one.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / i. Cardinal infinity
Paradox: there is no largest cardinal, but the class of everything seems to be the largest [Lavine]
     Full Idea: The paradox of the largest cardinal ('Cantor's Paradox') says the diagonal argument shows there is no largest cardinal, but the class of all individuals (including the classes) must be the largest cardinal number.
     From: Shaughan Lavine (Understanding the Infinite [1994], III.5)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory will found all of mathematics - except for the notion of proof [Lavine]
     Full Idea: Every theorem of mathematics has a counterpart with set theory - ...but that theory cannot serve as a basis for the notion of proof.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Modern mathematics works up to isomorphism, and doesn't care what things 'really are' [Lavine]
     Full Idea: In modern mathematics virtually all work is only up to isomorphism and no one cares what the numbers or points and lines 'really are'.
     From: Shaughan Lavine (Understanding the Infinite [1994], VI.1)
     A reaction: At least that leaves the field open for philosophers, because we do care what things really are. So should everybody else, but there is no persuading some people.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
Intuitionism rejects set-theory to found mathematics [Lavine]
     Full Idea: Intuitionism in philosophy of mathematics rejects set-theoretic foundations.
     From: Shaughan Lavine (Understanding the Infinite [1994], V.3 n33)
9. Objects / B. Unity of Objects / 3. Unity Problems / c. Statue and clay
If a statue is identical with the clay of which it is made, that identity is contingent [Gibbard]
     Full Idea: Under certain conditions a clay statue is identical with the piece of clay of which it is made, and if this is so then the identity is contingent.
     From: Allan Gibbard (Contingent Identity [1975], Intro)
     A reaction: This initiated the modern debate about statues, and it is an attack on Kripke's claim that if two things are identical, then they are necessarily identical. Kripke seems right about Hesperus and Phosphorus, but not about the statue.
A 'piece' of clay begins when its parts stick together, separately from other clay [Gibbard]
     Full Idea: A 'piece' of clay is a portion of clay which comes into existence when all of its parts come to be stuck to each other, and cease to be stuck to any clay which is not a part of the portion.
     From: Allan Gibbard (Contingent Identity [1975], I)
     A reaction: The sort of gormlessly elementary things that philosophers find themselves having to say, but this is a good basic assertion for a discussion of statue and clay, and I can't think of an objection to it.
Clay and statue are two objects, which can be named and reasoned about [Gibbard]
     Full Idea: The piece of clay and the statue are 'objects' - that is to say, they can be designated with proper names, and the logic we ordinarily use will still apply.
     From: Allan Gibbard (Contingent Identity [1975], I)
     A reaction: An interesting indication of the way that 'object' is used in modern analytic philosophy, which may not be the way that it is used in ordinary English. The number 'seven', for example, seems to be an object by this criterion.
We can only investigate the identity once we have designated it as 'statue' or as 'clay' [Gibbard]
     Full Idea: To ask meaningfully what that thing would be, we must designate it either as a statue or as a piece of clay. What that thing would be, apart from the way it is designated, is a question without meaning.
     From: Allan Gibbard (Contingent Identity [1975], III)
     A reaction: He obviously has a powerful point, but to suggest that we can only investigate a mysterious object once we have designated it as something sounds daft. It would ruin the fun of archaeology.
9. Objects / D. Essence of Objects / 7. Essence and Necessity / a. Essence as necessary properties
Essentialism is the existence of a definite answer as to whether an entity fulfils a condition [Gibbard]
     Full Idea: Essentialism for a class of entities is that for one entity and a condition which it fulfills, the question of whether it necessarily fulfills the condition has a definite answer apart from the way the entity is specified.
     From: Allan Gibbard (Contingent Identity [1975], VII)
     A reaction: Yet another definition of essentialism, but resting, as usual in modern discussions, entirely on the notion of necessity. Kit Fine's challenge is that if you investigate the source of the necessity, it turns out to be an essence.
9. Objects / D. Essence of Objects / 15. Against Essentialism
Essentialism for concreta is false, since they can come apart under two concepts [Gibbard]
     Full Idea: Essentialism for the class of concrete things is false, since a statue necessarily fulfils a condition as 'Goliath', but only contingently fulfils it as 'lumpl'. On the other hand, essentialism for the class of individual concepts can be true.
     From: Allan Gibbard (Contingent Identity [1975], VII)
     A reaction: This rests on his definition of essentialism in Idea 14076. He rests his essentialism about concepts on an account given by Carnap ('Meaning and Necessity' §41). The essence of a statue and the essence of a lump of clay do seem distinct.
9. Objects / E. Objects over Time / 12. Origin as Essential
A particular statue has sortal persistence conditions, so its origin defines it [Gibbard]
     Full Idea: A proper name like 'Goliath' denotes a thing in the actual world, and invokes a sortal with certain persistence criteria. Hence its origin makes a statue the statue that it is, and if statues in different worlds have the same beginning, they are the same.
     From: Allan Gibbard (Contingent Identity [1975], III)
     A reaction: Too neat. There are vague, ambiguous and duplicated origins. Persistence criteria can shift during the existence of a thing (like a club which changes its own constitution). In replicated statues, what is the status of the mould?
9. Objects / F. Identity among Objects / 6. Identity between Objects
Claims on contingent identity seem to violate Leibniz's Law [Gibbard]
     Full Idea: The most prominent objection to contingent identity (as in the case of the statue and its clay) is that it violates Leibniz's Law.
     From: Allan Gibbard (Contingent Identity [1975], V)
     A reaction: Depends what you mean by a property. The trickiest one would be that the statue has (right now) a disposition to be worth a lot, but the clay doesn't. But I don't think that is really a property of the statue. Properties are a muddle.
9. Objects / F. Identity among Objects / 8. Leibniz's Law
Two identical things must share properties - including creation and destruction times [Gibbard]
     Full Idea: For two things to be strictly identical, they must have all properties in common. That means, among other things, that they must start to exist at the same time and cease to exist at the same time.
     From: Allan Gibbard (Contingent Identity [1975], I)
     A reaction: I don't accept that coming into existence at time t is a 'property' of a thing. Coincident objects give you the notion of 'existing as' something, which complicates the whole story.
Leibniz's Law isn't just about substitutivity, because it must involve properties and relations [Gibbard]
     Full Idea: As a general law of substitutivity of identicals, Leibniz's Law is false. It is a law about properties and relations, that if two things are identical, they have the same properties and relations. It only works in contexts which attribute those.
     From: Allan Gibbard (Contingent Identity [1975], V)
     A reaction: I'm not convinced about relations, which are not intrinsic properties. Under different descriptions, the relations to human minds might differ.
10. Modality / E. Possible worlds / 3. Transworld Objects / a. Transworld identity
Possible worlds identity needs a sortal [Gibbard]
     Full Idea: Identity across possible worlds makes sense only with respect to a sortal
     From: Allan Gibbard (Contingent Identity [1975], IV)
     A reaction: See Gibbard's other ideas from this paper. I fear that the sortal invoked is too uncertain and slippery to do any useful job, and I can't see any principled difficulty with naming something before you can think of a sortal for it.
Only concepts, not individuals, can be the same across possible worlds [Gibbard]
     Full Idea: It is meaningless to talk of the same concrete thing in different possible worlds, ...but it makes sense to speak of the same individual concept, which is just a function which assigns to each possible world in a set an individual in that world.
     From: Allan Gibbard (Contingent Identity [1975], VII)
     A reaction: A lovely bold response to the problem of transworld identity, but one which needs investigation. It sounds very promising to me. 'Aristotle' is a cocept, not a name. There is no separate category of 'names'. Wow. (Attach dispositions to concepts?).
10. Modality / E. Possible worlds / 3. Transworld Objects / b. Rigid designation
Kripke's semantics needs lots of intuitions about which properties are essential [Gibbard]
     Full Idea: To use Kripke's semantics, one needs extensive intuitions that certain properties are essential and others accidental.
     From: Allan Gibbard (Contingent Identity [1975], X)
     A reaction: As usual, we could substitute the word 'necessary' for 'essential' without changing his meaning. If we are always referring to 'our' Hubert Humphrey is speculations about him, then nearly all of his properties will be necessary ones.
13. Knowledge Criteria / D. Scepticism / 1. Scepticism
Anaxarchus said that he was not even sure that he knew nothing [Anaxarchus, by Diog. Laertius]
     Full Idea: Anaxarchus said that he was not even sure that he knew nothing.
     From: report of Anaxarchus (fragments/reports [c.340 BCE]) by Diogenes Laertius - Lives of Eminent Philosophers 09.10.1
19. Language / B. Reference / 3. Direct Reference / b. Causal reference
Naming a thing in the actual world also invokes some persistence criteria [Gibbard]
     Full Idea: The reference of a name in the actual world is fixed partly by invoking a set of persistence criteria which determine what thing it names.
     From: Allan Gibbard (Contingent Identity [1975], III)
     A reaction: This is offered as a modification to Kripke, to deal with the statue and clay. I fear that the 'persistence criteria' may be too vague, and too subject to possible change after the origin, to do the job required.