Combining Philosophers

All the ideas for Archimedes, Alan Musgrave and Richard G. Heck

unexpand these ideas     |    start again     |     specify just one area for these philosophers


20 ideas

5. Theory of Logic / C. Ontology of Logic / 3. If-Thenism
The If-thenist view only seems to work for the axiomatised portions of mathematics [Musgrave]
     Full Idea: The If-thenist view seems to apply straightforwardly only to the axiomatised portions of mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: He cites Lakatos to show that cutting-edge mathematics is never axiomatised. One might reply that if the new mathematics is any good then it ought to be axiomatis-able (barring Gödelian problems).
Perhaps If-thenism survives in mathematics if we stick to first-order logic [Musgrave]
     Full Idea: If we identify logic with first-order logic, and mathematics with the collection of first-order theories, then maybe we can continue to maintain the If-thenist position.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: The problem is that If-thenism must rely on rules of inference. That seems to mean that what is needed is Soundness, rather than Completeness. That is, inference by the rules must work properly.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
Logical truths may contain non-logical notions, as in 'all men are men' [Musgrave]
     Full Idea: Containing only logical notions is not a necessary condition for being a logical truth, since a logical truth such as 'all men are men' may contain non-logical notions such as 'men'.
     From: Alan Musgrave (Logicism Revisited [1977], §3)
     A reaction: [He attributes this point to Russell] Maybe it is only a logical truth in its general form, as ∀x(x=x). Of course not all 'banks' are banks.
A statement is logically true if it comes out true in all interpretations in all (non-empty) domains [Musgrave]
     Full Idea: The standard modern view of logical truth is that a statement is logically true if it comes out true in all interpretations in all (non-empty) domains.
     From: Alan Musgrave (Logicism Revisited [1977], §3)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
The meaning of a number isn't just the numerals leading up to it [Heck]
     Full Idea: My knowing what the number '33' denotes cannot consist in my knowing that it denotes the number of decimal numbers between '1' and '33', because I would know that even if it were in hexadecimal (which I don't know well).
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: Obviously you wouldn't understand '33' if you didn't understand what '33 things' meant.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / f. Cardinal numbers
A basic grasp of cardinal numbers needs an understanding of equinumerosity [Heck]
     Full Idea: An appreciation of the connection between sameness of number and equinumerosity that it reports is essential to even the most primitive grasp of the concept of cardinal number.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
In counting, numerals are used, not mentioned (as objects that have to correlated) [Heck]
     Full Idea: One need not conceive of the numerals as objects in their own right in order to count. The numerals are not mentioned in counting (as objects to be correlated with baseball players), but are used.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: He observes that when you name the team, you aren't correlating a list of names with the players. I could correlate any old tags with some objects, and you could tell me the cardinality denoted by the last tag. I do ordinals, you do cardinals.
Is counting basically mindless, and independent of the cardinality involved? [Heck]
     Full Idea: I am not denying that counting can be done mindlessly, without making judgments of cardinality along the way. ...But the question is whether counting is, as it were, fundamentally a mindless exercise.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: He says no. It seems to me like going on a journey, where you can forget where you are going and where you have got to so far, but those underlying facts are always there. If you just tag things with unknown foreign numbers, you aren't really counting.
Counting is the assignment of successively larger cardinal numbers to collections [Heck]
     Full Idea: Counting is not mere tagging: it is the successive assignment of cardinal numbers to increasingly large collections of objects.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: That the cardinals are 'successive' seems to mean that they are ordinals as well. If you don't know that 'seven' means a cardinality, as well as 'successor of six', you haven't understood it. Days of the week have successors. Does PA capture cardinality?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / e. Counting by correlation
Understanding 'just as many' needn't involve grasping one-one correspondence [Heck]
     Full Idea: It is far from obvious that knowing what 'just as many' means requires knowing what a one-one correspondence is. The notion of a one-one correspondence is very sophisticated, and it is far from clear that five-year-olds have any grasp of it.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: The point is that children decide 'just as many' by counting each group and arriving at the same numeral, not by matching up. He cites psychological research by Gelman and Galistel.
We can know 'just as many' without the concepts of equinumerosity or numbers [Heck]
     Full Idea: 'Just as many' is independent of the ability to count, and we shouldn't characterise equinumerosity through counting. It is also independent of the concept of number. Enough cookies to go round doesn't need how many cookies.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 4)
     A reaction: [compressed] He talks of children having an 'operational' ability which is independent of these more sophisticated concepts. Interesting. You see how early man could relate 'how many' prior to the development of numbers.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
No two numbers having the same successor relies on the Axiom of Infinity [Musgrave]
     Full Idea: The axiom of Peano which states that no two numbers have the same successor requires the Axiom of Infinity for its proof.
     From: Alan Musgrave (Logicism Revisited [1977], §4 n)
     A reaction: [He refers to Russell 1919:131-2] The Axiom of Infinity is controversial and non-logical.
Frege's Theorem explains why the numbers satisfy the Peano axioms [Heck]
     Full Idea: The interest of Frege's Theorem is that it offers us an explanation of the fact that the numbers satisfy the Dedekind-Peano axioms.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says 'explaining' does not make it more fundamental, since all proofs explain why their conclusions hold.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Children can use numbers, without a concept of them as countable objects [Heck]
     Full Idea: For a long time my daughter had no understanding of the question of how many numerals or numbers there are between 'one' and 'five'. I think she lacked the concept of numerals as objects which can themselves be counted.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 5)
     A reaction: I can't make any sense of numbers actually being objects, though clearly treating all sorts of things as objects helps thinking (as in 'the victory is all that matters').
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Equinumerosity is not the same concept as one-one correspondence [Heck]
     Full Idea: Equinumerosity is not the same concept as being in one-one correspondence with.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 6)
     A reaction: He says this is the case, even if they are coextensive, like renate and cordate. You can see that five loaves are equinumerous with five fishes, without doing a one-one matchup.
We can understand cardinality without the idea of one-one correspondence [Heck]
     Full Idea: One can have a perfectly serviceable concept of cardinality without so much as having the concept of one-one correspondence.
     From: Richard G. Heck (Cardinality, Counting and Equinumerosity [2000], 3)
     A reaction: This is the culmination of a lengthy discussion. It includes citations about the psychology of children's counting. Cardinality needs one group of things, and 1-1 needs two groups.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
Formalism seems to exclude all creative, growing mathematics [Musgrave]
     Full Idea: Formalism seems to exclude from consideration all creative, growing mathematics.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: [He cites Lakatos in support] I am not immediately clear why spotting the remote implications of a formal system should be uncreative. The greatest chess players are considered to be highly creative and imaginative.
Formalism is a bulwark of logical positivism [Musgrave]
     Full Idea: Formalism is a bulwark of logical positivist philosophy.
     From: Alan Musgrave (Logicism Revisited [1977], §5)
     A reaction: Presumably if you drain all the empirical content out of arithmetic and geometry, you are only left with the bare formal syntax, of symbols and rules. That seems to be as analytic as you can get.
19. Language / A. Nature of Meaning / 5. Meaning as Verification
Logical positivists adopted an If-thenist version of logicism about numbers [Musgrave]
     Full Idea: Logical positivists did not adopt old-style logicism, but rather logicism spiced with varying doses of If-thenism.
     From: Alan Musgrave (Logicism Revisited [1977], §4)
     A reaction: This refers to their account of mathematics as a set of purely logical truths, rather than being either empirical, or a priori synthetic.