Combining Philosophers

All the ideas for Archimedes, Keith Devlin and Philip Kitcher

unexpand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

1. Philosophy / B. History of Ideas / 5. Later European Thought
Logic was merely a branch of rhetoric until the scientific 17th century [Devlin]
     Full Idea: Until the rise of what we call the scientific method in the seventeenth century, logic was regarded largely as one aspect of rhetoric - a study of how one person't argument could convince another.
     From: Keith Devlin (Goodbye Descartes [1997], Ch.11)
     A reaction: This may well give the main reason why the Greeks invented logic in the first place. Aristotle wrote a book on rhetoric, and that was where the money was. Leibniz is clearly a key figure in the change of attitude.
4. Formal Logic / A. Syllogistic Logic / 2. Syllogistic Logic
'No councillors are bankers' and 'All bankers are athletes' implies 'Some athletes are not councillors' [Devlin]
     Full Idea: Most people find it hard to find any conclusion that fits the following premises: 'No councillors are bankers', and 'All bankers are athletes'. There is a valid conclusion ('Some athletes are not councillors') but it takes quite an effort to find it.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: A nice illustration of the fact that syllogistic logic is by no means automatic and straightforward. There is a mechanical procedure, but a lot of intuition and common sense is also needed.
4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Modern propositional inference replaces Aristotle's 19 syllogisms with modus ponens [Devlin]
     Full Idea: Where Aristotle had 19 different inference rules (his valid syllogisms), modern propositional logic carries out deductions using just one rule of inference: modus ponens.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: At first glance it sounds as if Aristotle's guidelines might be more useful than the modern one, since he tells you something definite and what implies what, where modus ponens just seems to define the word 'implies'.
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Predicate logic retains the axioms of propositional logic [Devlin]
     Full Idea: Since predicate logic merely extends propositional logic, all the axioms of propositional logic are axioms of predicate logic.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: See Idea 7798 for the axioms.
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Situation theory is logic that takes account of context [Devlin]
     Full Idea: In many respects, situation theory is an extension of classical logic that takes account of context.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 8)
     A reaction: John Barwise is cited as the parent of this movement. Many examples show that logical form is very hard to pin down, because word-meaning depends on context (e.g. 'several crumbs' differs from 'several mountains').
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Golden ages: 1900-1960 for pure logic, and 1950-1985 for applied logic [Devlin]
     Full Idea: The period from 1900 to about 1960 could be described as the golden age of 'pure' logic, and 1950 to 1985 the golden age of 'applied' logic (e.g. applied to everyday reasoning, and to theories of language).
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 4)
     A reaction: Why do we always find that we have just missed the Golden Age? However this supports the uneasy feeling that the golden age for all advances in human knowledge is just coming to an end. Biology, including the brain, is the last frontier.
Montague's intensional logic incorporated the notion of meaning [Devlin]
     Full Idea: Montague's intensional logic was the first really successful attempt to develop a mathematical framework that incorporates the notion of meaning.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 8)
     A reaction: Previous logics, led by Tarski, had flourished by sharply dividing meaning from syntax, and concentrating on the latter.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is our preconditions for assessing empirical evidence [Kitcher]
     Full Idea: In my terminology, classical logic (or at least, its most central tenets) consists of propositional preconditions for our assessing empirical evidence in the way we do.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: I like an even stronger version of this - that classical logic arises out of our experiences of things, and so we are just assessing empirical evidence in terms of other (generalised) empirical evidence. Logic results from induction. Very unfashionable.
I believe classical logic because I was taught it and use it, but it could be undermined [Kitcher]
     Full Idea: I believe the laws of classical logic, in part because I was taught them, and in part because I think I see how those laws are used in assessing evidence. But my belief could easily be undermined by experience.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: Quine has one genuine follower! The trouble is his first sentence would fit witch-doctoring just as well. Kitcher went to Cambridge; I hope he doesn't just believe things because he was taught them, or because he 'sees how they are used'!
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Where a conditional is purely formal, an implication implies a link between premise and conclusion [Devlin]
     Full Idea: Implication involves some form of link or causality between the antecedent and the consequent of an if-then; normally it says that the conclusion is a consequence of the premise (where conditionals are just defined by 'true' and 'false').
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: This distinction is a key one when discussing 'If-then' sentences. Some are merely formal conditionals, but others make real claims about where you can get to from where you are.
5. Theory of Logic / E. Structures of Logic / 1. Logical Form
Sentences of apparent identical form can have different contextual meanings [Devlin]
     Full Idea: "Safety goggles must be worn in the building" is clear enough, but "dogs must always be carried on the escalator" doesn't require us to head off in search of a dog.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 1)
     A reaction: A nice illustration of how the requirements of logical form will often take us beyond the strict and literal meaning of a sentence, into context, tone, allusion and subjective aspects.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / a. Achilles paradox
Space and time are atomic in the arrow, and divisible in the tortoise [Devlin]
     Full Idea: The arrow paradox starts with the assumption that space and time are atomic; the tortoise starts with the opposite assumption that space and time are infinitely divisible.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: Aquinas similarly covers all options (the cosmos has a beginning, or no beginning). The nature of movement in a space which involves quantum leaps remains metaphysically puzzling. Where is a particle at half of the Planck time?
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
     Full Idea: Kitcher says maths is an 'idealising theory', like some in physics; maths idealises features of the world, and practical operations, such as segregating and matching (numbering), measuring, cutting, moving, assembling (geometry), and collecting (sets).
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984]) by Michael D. Resnik - Maths as a Science of Patterns One.4.2.2
     A reaction: This seems to be an interesting line, which is trying to be fairly empirical, and avoid basing mathematics on purely a priori understanding. Nevertheless, we do not learn idealisation from experience. Resnik labels Kitcher an anti-realist.
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
     Full Idea: Proposals for a priori mathematical knowledge have three main types: conceptualist (true in virtue of concepts), constructivist (a construct of the human mind) and realist (in virtue of mathematical facts).
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.3)
     A reaction: Realism is pure platonism. I think I currently vote for conceptualism, with the concepts deriving from the concrete world, and then being extended by fictional additions, and shifts in the notion of what 'number' means.
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
     Full Idea: What makes a question interesting or gives it aesthetic appeal is its focussing of the project of advancing mathematical understanding, in light of the concepts and systems of beliefs already achieved.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.3)
     A reaction: Kitcher defends explanation (the source of understanding, presumably) in terms of unification with previous theories (the 'concepts and systems'). I always have the impression that mathematicians speak of 'beauty' when they see economy of means.
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
     Full Idea: Insofar as we can honor claims about the aesthetic qualities or the interest of mathematical inquiries, we should do so by pointing to their explanatory power.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.4)
     A reaction: I think this is a good enough account for me (but probably not for my friend Carl!). Beautiful cars are particularly streamlined. Beautiful people look particularly healthy. A beautiful idea is usually wide-ranging.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
     Full Idea: An important episode in the acceptance of complex numbers was the development by Wessel, Argand, and Gauss, of a geometrical model of the numbers.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: The model was in terms of vectors and rotation. New types of number are spurned until they can be shown to integrate into a range of mathematical practice, at which point mathematicians change the meaning of 'number' (without consulting us).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
     Full Idea: We perform a one-operation when we perform a segregative operation in which a single object is segregated.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.3)
     A reaction: This is part of Kitcher's empirical but constructive account of arithmetic, which I find very congenial. He avoids the word 'unit', and goes straight to the concept of 'one' (which he treats as more primitive than zero).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
     Full Idea: There is an old explanation of the utility of mathematics. Mathematics describes the structural features of our world, features which are manifested in the behaviour of all the world's inhabitants.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: He only cites Russell in modern times as sympathising with this view, but Kitcher gives it some backing. I think the view is totally correct. The digression produced by Cantorian infinities has misled us.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
     Full Idea: The method of infinitesimals is that you divide by the time, and then set the time to zero.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 10.2)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
     Full Idea: Philosophers who hope to avoid commitment to abstract entities by claiming that mathematical statements are analytic must show how analyticity is, or provides a species of, truth not requiring reference.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.I)
     A reaction: [the last part is a quotation from W.D. Hart] Kitcher notes that Frege has a better account, because he provides objects to which reference can be made. I like this idea, which seems to raise a very large question, connected to truthmakers.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is an idealizing theory [Kitcher]
     Full Idea: I construe arithmetic as an idealizing theory.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: I find 'generalising' the most helpful word, because everyone seems to understand and accept the idea. 'Idealisation' invokes 'ideals', which lots of people dislike, and lots of philosophers seem to have trouble with 'abstraction'.
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
     Full Idea: I want to suggest both that arithmetic owes its truth to the structure of the world and that arithmetic is true in virtue of our constructive activity.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: Well said, but the problem seems no more mysterious to me than the fact that trees grow in the woods and we build houses out of them. I think I will declare myself to be an 'empirical constructivist' about mathematics.
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
     Full Idea: The development of a language for describing our correlational activity itself enables us to perform higher level operations.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: This is because all language itself (apart from proper names) is inherently general, idealised and abstracted. He sees the correlations as the nested collections expressed by set theory.
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
     Full Idea: The constructivist ontological thesis is that mathematics owes its truth to the activity of an actual or ideal subject. The epistemological thesis is that we can have a priori knowledge of this activity, and so recognise its limits.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: The mention of an 'ideal' is Kitcher's personal view. Kitcher embraces the first view, and rejects the second.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
     Full Idea: Conceptualists claim that we have basic a priori knowledge of mathematical axioms in virtue of our possession of mathematical concepts.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.1)
     A reaction: I sympathise with this view. If concepts are reasonably clear, they will relate to one another in certain ways. How could they not? And how else would you work out those relations other than by thinking about them?
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
     Full Idea: Someone who believes that basic truths of mathematics are true in virtue of meaning is not absolved from the task of saying what the referents of mathematical terms are, or ...what mathematical reality is like.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.6)
     A reaction: Nice question! He's a fan of getting at the explanatory in mathematics.
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
     Full Idea: The original introduction of abstract objects was a bad way of doing justice to the insight that mathematics is concerned with structure.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: I'm a fan of explanations in metaphysics, and hence find the concept of 'bad' explanations in metaphysics particularly intriguing.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Many necessities are inexpressible, and unknowable a priori [Kitcher]
     Full Idea: There are plenty of necessary truths that we are unable to express, let alone know a priori.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: This certainly seems to put paid to any simplistic idea that the a priori and the necessary are totally coextensive. We might, I suppose, claim that all necessities are a priori for the Archangel Gabriel (or even a very bright cherub). Cf. Idea 12429.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Knowing our own existence is a priori, but not necessary [Kitcher]
     Full Idea: What is known a priori may not be necessary, if we know a priori that we ourselves exist and are actual.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: Compare Idea 12428, which challenges the inverse of this relationship. This one looks equally convincing, and Kripke adds other examples of contingent a priori truths, such as those referring to the metre rule in Paris.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
     Full Idea: X knows a priori that p iff the belief was produced with an a priori warrant, which is a process which is available to X, and this process is a warrant, and it makes p true.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.4)
     A reaction: [compression of a formal spelling-out] This is a modified version of Goldman's reliabilism, for a priori knowledge. It sounds a bit circular and uninformative, but it's a start.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
     Full Idea: When we follow long mathematical proofs we lose our a priori warrants for their beginnings.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.2)
     A reaction: Kitcher says Descartes complains about this problem several times in his 'Regulae'. The problem runs even deeper into all reasoning, if you become sceptical about memory. You have to remember step 1 when you do step 2.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
     Full Idea: Knowledge is independent of experience if any experience which would enable us to acquire the concepts involved would enable us to have the knowledge.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.3)
     A reaction: This is the 'conceptualist' view of a priori knowledge, which Kitcher goes on to attack, preferring a 'constructivist' view. The formula here shows that we can't divorce experience entirely from a priori thought. I find conceptualism a congenial view.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
     Full Idea: One can make a powerful case for supposing that some self-knowledge is a priori. At most, if not all, of our waking moments, each of us knows of herself that she exists.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.6)
     A reaction: This is a begrudging concession from a strong opponent to the whole notion of a priori knowledge. I suppose if you ask 'what can be known by thought alone?' then truths about thought ought to be fairly good initial candidates.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
     Full Idea: A 'warrant' refers to those processes which produce belief 'in the right way': X knows that p iff p, and X believes that p, and X's belief that p was produced by a process which is a warrant for it.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.2)
     A reaction: That is, a 'warrant' is a justification which makes a belief acceptable as knowledge. Traditionally, warrants give you certainty (and are, consequently, rather hard to find). I would say, in the modern way, that warrants are agreed by social convention.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
     Full Idea: According to Kitcher, if experiential evidence can defeat someone's justification for a belief, then their justification depends on the absence of that experiential evidence.
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984], p.89) by Albert Casullo - A Priori Knowledge 2.3
     A reaction: Sounds implausible. There are trillions of possible defeaters for most beliefs, but to say they literally depend on trillions of absences seems a very odd way of seeing the situation
13. Knowledge Criteria / E. Relativism / 5. Language Relativism
People still say the Hopi have no time concepts, despite Whorf's later denial [Devlin]
     Full Idea: The Hopi time myth does not appear to have been stopped for a moment by the fact that Whorf himself subsequently wrote that the Hopi language does indeed have words for past, present, and future
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 5)
     A reaction: Arguments for relativism based on the Hopi seem now to be thoroughly discredited. Sensible people never believed them in the first place.
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]
     Full Idea: To idealize is to trade accuracy in describing the actual for simplicity of description, and the compromise can sometimes be struck in different ways.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: There is clearly rather more to idealisation than mere simplicity. A matchstick man is not an ideal man.
19. Language / C. Assigning Meanings / 1. Syntax
How do we parse 'time flies like an arrow' and 'fruit flies like an apple'? [Devlin]
     Full Idea: How do people identify subject and verb in the sentences "time flies like an arrow" and "fruit flies like an apple"?
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 1)
     A reaction: A nice illustration of the fact that even if we have an innate syntax mechanism, it won't work without some semantics, and some experience of the environmental context of utterances.
19. Language / D. Propositions / 2. Abstract Propositions / a. Propositions as sense
The distinction between sentences and abstract propositions is crucial in logic [Devlin]
     Full Idea: The distinction between sentences and the abstract propositions that they express is one of the key ideas of logic. A logical argument consists of propositions, assembled together in a systematic fashion.
     From: Keith Devlin (Goodbye Descartes [1997], Ch. 2)
     A reaction: He may claim that arguments consist of abstract propositions, but they always get expressed in sentences. However, the whole idea of logical form implies the existence of propositions - there is something which a messy sentence 'really' says.