Combining Philosophers

All the ideas for Archimedes, Richard L. Kirkham and Max J. Cresswell

unexpand these ideas     |    start again     |     specify just one area for these philosophers


15 ideas

3. Truth / A. Truth Problems / 5. Truth Bearers
There are at least fourteen candidates for truth-bearers [Kirkham]
     Full Idea: Among the candidates [for truthbearers] are beliefs, propositions, judgments, assertions, statements, theories, remarks, ideas, acts of thought, utterances, sentence tokens, sentence types, sentences (unspecified), and speech acts.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 2.3)
     A reaction: I vote for propositions, but only in the sense of the thoughts underlying language, not the Russellian things which are supposed to exist independently from thinkers.
3. Truth / F. Semantic Truth / 1. Tarski's Truth / b. Satisfaction and truth
A 'sequence' of objects is an order set of them [Kirkham]
     Full Idea: A 'sequence' of objects is like a set of objects, except that, unlike a set, the order of the objects is important when dealing with sequences. ...An infinite sequence satisfies 'x2 is purple' if and only if the second member of the sequence is purple.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 5.4)
     A reaction: This explains why Tarski needed set theory in his metalanguage.
If one sequence satisfies a sentence, they all do [Kirkham]
     Full Idea: If one sequence satisfies a sentence, they all do. ...Thus it matters not whether we define truth as satisfaction by some sequence or as satisfaction by all sequences.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 5.4)
     A reaction: So if the striker scores a goal, the team has scored a goal.
3. Truth / F. Semantic Truth / 2. Semantic Truth
If we define truth by listing the satisfactions, the supply of predicates must be finite [Kirkham]
     Full Idea: Because the definition of satisfaction must have a separate clause for each predicate, Tarski's method only works for languages with a finite number of predicates, ...but natural languages have an infinite number of predicates.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 5.5)
     A reaction: He suggest predicates containing natural numbers, as examples of infinite predicates. Davidson tried to extend the theory to natural languages, by (I think) applying it to adverbs, which could generate the infinite predicates. Maths has finite predicates.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / b. System K
Normal system K has five axioms and rules [Cresswell]
     Full Idea: Normal propositional modal logics derive from the minimal system K: wffs of PC are axioms; □(p⊃q)⊃(□p⊃□q); uniform substitution; modus ponens; necessitation (α→□α).
     From: Max J. Cresswell (Modal Logic [2001], 7.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / c. System D
D is valid on every serial frame, but not where there are dead ends [Cresswell]
     Full Idea: If a frame contains any dead end or blind world, then D is not valid on that frame, ...but D is valid on every serial frame.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.1)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
S4 has 14 modalities, and always reduces to a maximum of three modal operators [Cresswell]
     Full Idea: In S4 there are exactly 14 distinct modalities, and any modality may be reduced to one containing no more than three modal operators in sequence.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
     A reaction: The significance of this may be unclear, but it illustrates one of the rewards of using formal systems to think about modal problems. There is at least an appearance of precision, even if it is only conditional precision.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
In S5 all the long complex modalities reduce to just three, and their negations [Cresswell]
     Full Idea: S5 contains the four main reduction laws, so the first of any pair of operators may be deleted. Hence all but the last modal operator may be deleted. This leaves six modalities: p, ◊p, □p, and their negations.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
4. Formal Logic / D. Modal Logic ML / 7. Barcan Formula
Reject the Barcan if quantifiers are confined to worlds, and different things exist in other worlds [Cresswell]
     Full Idea: If one wants the quantifiers in each world to range only over the things that exist in that world, and one doesn't believe that the same things exist in every world, one would probably not want the Barcan formula.
     From: Max J. Cresswell (Modal Logic [2001], 7.2.2)
     A reaction: I haven't quite got this, but it sounds to me like I should reject the Barcan formula (but Idea 9449!). I like a metaphysics to rest on the actual world (with modal properties). I assume different things could have existed, but don't.
5. Theory of Logic / A. Overview of Logic / 5. First-Order Logic
In quantified language the components of complex sentences may not be sentences [Kirkham]
     Full Idea: In a quantified language it is possible to build new sentences by combining two expressions neither of which is itself a sentence.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 5.4)
     A reaction: In propositional logic the components are other sentences, so the truth value can be given by their separate truth-values, through truth tables. Kirkham is explaining the task which Tarski faced. Truth-values are not just compositional.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
An open sentence is satisfied if the object possess that property [Kirkham]
     Full Idea: An object satisfies an open sentence if and only if it possesses the property expressed by the predicate of the open sentence.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 5.4)
     A reaction: This applies to atomic sentence, of the form Fx or Fa (that is, some variable is F, or some object is F). So strictly, only the world can decide whether some open sentence is satisfied. And it all depends on things called 'properties'.
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.
7. Existence / D. Theories of Reality / 8. Facts / b. Types of fact
Why can there not be disjunctive, conditional and negative facts? [Kirkham]
     Full Idea: It has been said that there are no disjunctive facts, conditional facts, or negative facts. ...but it is not at all clear why there cannot be facts of this sort.
     From: Richard L. Kirkham (Theories of Truth: a Critical Introduction [1992], 5.6)
     A reaction: I love these sorts of facts, and offer them as a naturalistic basis for logic. You probably need the world to have modal features, but I have those in the form of powers and dispositions.
8. Modes of Existence / A. Relations / 4. Formal Relations / a. Types of relation
A relation is 'Euclidean' if aRb and aRc imply bRc [Cresswell]
     Full Idea: A relation is 'Euclidean' if aRb and aRc imply bRc.
     From: Max J. Cresswell (Modal Logic [2001], 7.1.2)
     A reaction: If a thing has a relation to two separate things, then those two things will also have that relation between them. If I am in the same family as Jim and as Jill, then Jim and Jill are in the same family.
10. Modality / A. Necessity / 4. De re / De dicto modality
A de dicto necessity is true in all worlds, but not necessarily of the same thing in each world [Cresswell]
     Full Idea: A de dicto necessary truth says that something is φ, that this proposition is a necessary truth, i.e. that in every accessible world something (but not necessarily the same thing in each world) is φ.
     From: Max J. Cresswell (Modal Logic [2001], 7.2.1)
     A reaction: At last, a really clear and illuminating account of this term! The question is then invited of what is the truthmaker for a de dicto truth, assuming that the objects themselves are truthmakers for de re truths.