Combining Philosophers

All the ideas for Archimedes, W Quine / J Ullian and Michael Hallett

unexpand these ideas     |    start again     |     specify just one area for these philosophers


6 ideas

1. Philosophy / F. Analytic Philosophy / 1. Nature of Analysis
Philosophers have given precise senses to deduction, probability, computability etc [Quine/Ullian]
     Full Idea: Successful explications (giving a precise sense to a term) have been found for the concepts of deduction, probability and computability, to name just three.
     From: W Quine / J Ullian (The Web of Belief [1970], 65), quoted by Alex Orenstein - W.V. Quine Ch.3
     A reaction: Quine also cites the concept of an 'ordered pair'. Orenstein adds Tarski's definition of truth, Russell's definite descriptions, and the explication of existence in terms of quantifications. Cf. Idea 2958.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
The first-order ZF axiomatisation is highly non-categorical [Hallett,M]
     Full Idea: The first-order Sermelo-Fraenkel axiomatisation is highly non-categorical.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1213)
Non-categoricity reveals a sort of incompleteness, with sets existing that the axioms don't reveal [Hallett,M]
     Full Idea: The non-categoricity of the axioms which Zermelo demonstrates reveals an incompleteness of a sort, ....for this seems to show that there will always be a set (indeed, an unending sequence) that the basic axioms are incapable of revealing to be sets.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1215)
     A reaction: Hallett says the incompleteness concerning Zermelo was the (transfinitely) indefinite iterability of the power set operation (which is what drives the 'iterative conception' of sets).
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
Zermelo allows ur-elements, to enable the widespread application of set-theory [Hallett,M]
     Full Idea: Unlike earlier writers (such as Fraenkel), Zermelo clearly allows that there might be ur-elements (that is, objects other than the empty set, which have no members). Indeed he sees in this the possibility of widespread application of set-theory.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The General Continuum Hypothesis and its negation are both consistent with ZF [Hallett,M]
     Full Idea: In 1938, Gödel showed that ZF plus the General Continuum Hypothesis is consistent if ZF is. Cohen showed that ZF and not-GCH is also consistent if ZF is, which finally shows that neither GCH nor ¬GCH can be proved from ZF itself.
     From: Michael Hallett (Introduction to Zermelo's 1930 paper [1996], p.1217)
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Archimedes defined a straight line as the shortest distance between two points [Archimedes, by Leibniz]
     Full Idea: Archimedes gave a sort of definition of 'straight line' when he said it is the shortest line between two points.
     From: report of Archimedes (fragments/reports [c.240 BCE]) by Gottfried Leibniz - New Essays on Human Understanding 4.13
     A reaction: Commentators observe that this reduces the purity of the original Euclidean axioms, because it involves distance and measurement, which are absent from the purest geometry.