Combining Philosophers

All the ideas for Augustin-Louis Cauchy, Herbert B. Enderton and Harold Hodes

unexpand these ideas     |    start again     |     specify just one area for these philosophers


50 ideas

3. Truth / F. Semantic Truth / 2. Semantic Truth
Truth in a model is more tractable than the general notion of truth [Hodes]
     Full Idea: Truth in a model is interesting because it provides a transparent and mathematically tractable model - in the 'ordinary' rather than formal sense of the term 'model' - of the less tractable notion of truth.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This is an important warning to those who wish to build their entire account of truth on Tarski's rigorously formal account of the term. Personally I think we should start by deciding whether 'true' can refer to the mental state of a dog. I say it can.
Truth is quite different in interpreted set theory and in the skeleton of its language [Hodes]
     Full Idea: There is an enormous difference between the truth of sentences in the interpreted language of set theory and truth in some model for the disinterpreted skeleton of that language.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.132)
     A reaction: This is a warning to me, because I thought truth and semantics only entered theories at the stage of 'interpretation'. I must go back and get the hang of 'skeletal' truth, which sounds rather charming. [He refers to set theory, not to logic.]
4. Formal Logic / B. Propositional Logic PL / 3. Truth Tables
Until the 1960s the only semantics was truth-tables [Enderton]
     Full Idea: Until the 1960s standard truth-table semantics were the only ones that there were.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.10.1)
     A reaction: The 1960s presumably marked the advent of possible worlds.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
'dom R' indicates the 'domain' of objects having a relation [Enderton]
     Full Idea: 'dom R' indicates the 'domain' of a relation, that is, the set of all objects that are members of ordered pairs and that have that relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'fld R' indicates the 'field' of all objects in the relation [Enderton]
     Full Idea: 'fld R' indicates the 'field' of a relation, that is, the set of all objects that are members of ordered pairs on either side of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'ran R' indicates the 'range' of objects being related to [Enderton]
     Full Idea: 'ran R' indicates the 'range' of a relation, that is, the set of all objects that are members of ordered pairs and that are related to by the first objects.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We write F:A→B to indicate that A maps into B (the output of F on A is in B) [Enderton]
     Full Idea: We write F : A → B to indicate that A maps into B, that is, the domain of relating things is set A, and the things related to are all in B. If we add that F = B, then A maps 'onto' B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
'F(x)' is the unique value which F assumes for a value of x [Enderton]
     Full Idea: F(x) is a 'function', which indicates the unique value which y takes in ∈ F. That is, F(x) is the value y which F assumes at x.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A 'linear or total ordering' must be transitive and satisfy trichotomy [Enderton]
     Full Idea: A 'linear ordering' (or 'total ordering') on A is a binary relation R meeting two conditions: R is transitive (of xRy and yRz, the xRz), and R satisfies trichotomy (either xRy or x=y or yRx).
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:62)
∈ says the whole set is in the other; ⊆ says the members of the subset are in the other [Enderton]
     Full Idea: To know if A ∈ B, we look at the set A as a single object, and check if it is among B's members. But if we want to know whether A ⊆ B then we must open up set A and check whether its various members are among the members of B.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:04)
     A reaction: This idea is one of the key ideas to grasp if you are going to get the hang of set theory. John ∈ USA ∈ UN, but John is not a member of the UN, because he isn't a country. See Idea 12337 for a special case.
The 'ordered pair' <x,y> is defined to be {{x}, {x,y}} [Enderton]
     Full Idea: The 'ordered pair' <x,y> is defined to be {{x}, {x,y}}; hence it can be proved that <u,v> = <x,y> iff u = x and v = y (given by Kuratowski in 1921). ...The definition is somewhat arbitrary, and others could be used.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:36)
     A reaction: This looks to me like one of those regular cases where the formal definitions capture all the logical behaviour of the concept that are required for inference, while failing to fully capture the concept for ordinary conversation.
The 'powerset' of a set is all the subsets of a given set [Enderton]
     Full Idea: The 'powerset' of a set is all the subsets of a given set. Thus: PA = {x : x ⊆ A}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
Two sets are 'disjoint' iff their intersection is empty [Enderton]
     Full Idea: Two sets are 'disjoint' iff their intersection is empty (i.e. they have no members in common).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'domain' of a relation is the set of members of ordered pairs in the relation [Enderton]
     Full Idea: The 'domain' of a relation is the set of all objects that are members of ordered pairs that are members of the relation.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A 'relation' is a set of ordered pairs [Enderton]
     Full Idea: A 'relation' is a set of ordered pairs. The ordering relation on the numbers 0-3 is captured by - in fact it is - the set of ordered pairs {<0,1>,<0,2>,<0,3>,<1,2>,<1,3>,<2,3>}.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
     A reaction: This can't quite be a definition of order among numbers, since it relies on the notion of a 'ordered' pair.
A 'function' is a relation in which each object is related to just one other object [Enderton]
     Full Idea: A 'function' is a relation which is single-valued. That is, for each object, there is only one object in the function set to which that object is related.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A into B' if the relating things are set A, and the things related to are all in B [Enderton]
     Full Idea: A function 'maps A into B' if the domain of relating things is set A, and the things related to are all in B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A function 'maps A onto B' if the relating things are set A, and the things related to are set B [Enderton]
     Full Idea: A function 'maps A onto B' if the domain of relating things is set A, and the things related to are set B.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'reflexive' on a set if every member bears the relation to itself [Enderton]
     Full Idea: A relation is 'reflexive' on a set if every member of the set bears the relation to itself.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'symmetric' on a set if every ordered pair has the relation in both directions [Enderton]
     Full Idea: A relation is 'symmetric' on a set if every ordered pair in the set has the relation in both directions.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second [Enderton]
     Full Idea: A set is 'dominated' by another if a one-to-one function maps the first set into a subset of the second.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation is 'transitive' if it can be carried over from two ordered pairs to a third [Enderton]
     Full Idea: A relation is 'transitive' on a set if the relation can be carried over from two ordered pairs to a third.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
A relation satisfies 'trichotomy' if all pairs are either relations, or contain identical objects [Enderton]
     Full Idea: A relation satisfies 'trichotomy' on a set if every ordered pair is related (in either direction), or the objects are identical.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / b. Empty (Null) Set
Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ [Enderton]
     Full Idea: Note that {Φ} =/= Φ, because Φ ∈ {Φ} but Φ ∉ Φ. A man with an empty container is better off than a man with nothing.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1.03)
The empty set may look pointless, but many sets can be constructed from it [Enderton]
     Full Idea: It might be thought at first that the empty set would be a rather useless or even frivolous set to mention, but from the empty set by various set-theoretic operations a surprising array of sets will be constructed.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:02)
     A reaction: This nicely sums up the ontological commitments of mathematics - that we will accept absolutely anything, as long as we can have some fun with it. Sets are an abstraction from reality, and the empty set is the very idea of that abstraction.
4. Formal Logic / F. Set Theory ST / 3. Types of Set / c. Unit (Singleton) Sets
The singleton is defined using the pairing axiom (as {x,x}) [Enderton]
     Full Idea: Given any x we have the singleton {x}, which is defined by the pairing axiom to be {x,x}.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 2:19)
     A reaction: An interesting contrivance which is obviously aimed at keeping the axioms to a minimum. If you can do it intuitively with a new axiom, or unintuitively with an existing axiom - prefer the latter!
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
An 'equivalence relation' is a reflexive, symmetric and transitive binary relation [Enderton]
     Full Idea: An 'equivalence relation' is a binary relation which is reflexive, and symmetric, and transitive.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
We 'partition' a set into distinct subsets, according to each relation on its objects [Enderton]
     Full Idea: Equivalence classes will 'partition' a set. That is, it will divide it into distinct subsets, according to each relation on the set.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], Ch.0)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Fraenkel added Replacement, to give a theory of ordinal numbers [Enderton]
     Full Idea: It was observed by several people that for a satisfactory theory of ordinal numbers, Zermelo's axioms required strengthening. The Axiom of Replacement was proposed by Fraenkel and others, giving rise to the Zermelo-Fraenkel (ZF) axioms.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 1:15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
We can only define functions if Choice tells us which items are involved [Enderton]
     Full Idea: For functions, we know that for any y there exists an appropriate x, but we can't yet form a function H, as we have no way of defining one particular choice of x. Hence we need the axiom of choice.
     From: Herbert B. Enderton (Elements of Set Theory [1977], 3:48)
5. Theory of Logic / A. Overview of Logic / 1. Overview of Logic
Inference not from content, but from the fact that it was said, is 'conversational implicature' [Enderton]
     Full Idea: The process is dubbed 'conversational implicature' when the inference is not from the content of what has been said, but from the fact that it has been said.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7.3)
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Higher-order logic may be unintelligible, but it isn't set theory [Hodes]
     Full Idea: Brand higher-order logic as unintelligible if you will, but don't conflate it with set theory.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: [he gives Boolos 1975 as a further reference] This is simply a corrective, because the conflation of second-order logic with set theory is an idea floating around in the literature.
5. Theory of Logic / B. Logical Consequence / 2. Types of Consequence
Validity is either semantic (what preserves truth), or proof-theoretic (following procedures) [Enderton]
     Full Idea: The point of logic is to give an account of the notion of validity,..in two standard ways: the semantic way says that a valid inference preserves truth (symbol |=), and the proof-theoretic way is defined in terms of purely formal procedures (symbol |-).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.3..)
     A reaction: This division can be mirrored in mathematics, where it is either to do with counting or theorising about things in the physical world, or following sets of rules from axioms. Language can discuss reality, or play word-games.
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is a level one relation with a second-order definition [Hodes]
     Full Idea: Identity should he considered a logical notion only because it is the tip of a second-order iceberg - a level 1 relation with a pure second-order definition.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
5. Theory of Logic / I. Semantics of Logic / 1. Semantics of Logic
When an 'interpretation' creates a model based on truth, this doesn't include Fregean 'sense' [Hodes]
     Full Idea: A model is created when a language is 'interpreted', by assigning non-logical terms to objects in a set, according to a 'true-in' relation, but we must bear in mind that this 'interpretation' does not associate anything like Fregean senses with terms.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.131)
     A reaction: This seems like a key point (also made by Hofweber) that formal accounts of numbers, as required by logic, will not give an adequate account of the semantics of number-terms in natural languages.
5. Theory of Logic / I. Semantics of Logic / 3. Logical Truth
A logical truth or tautology is a logical consequence of the empty set [Enderton]
     Full Idea: A is a logical truth (tautology) (|= A) iff it is a semantic consequence of the empty set of premises (φ |= A), that is, every interpretation makes A true.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.3.4)
     A reaction: So the final column of every line of the truth table will be T.
5. Theory of Logic / I. Semantics of Logic / 4. Satisfaction
A truth assignment to the components of a wff 'satisfy' it if the wff is then True [Enderton]
     Full Idea: A truth assignment 'satisfies' a formula, or set of formulae, if it evaluates as True when all of its components have been assigned truth values.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.2)
     A reaction: [very roughly what Enderton says!] The concept becomes most significant when a large set of wff's is pronounced 'satisfied' after a truth assignment leads to them all being true.
5. Theory of Logic / K. Features of Logics / 3. Soundness
A proof theory is 'sound' if its valid inferences entail semantic validity [Enderton]
     Full Idea: If every proof-theoretically valid inference is semantically valid (so that |- entails |=), the proof theory is said to be 'sound'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 4. Completeness
A proof theory is 'complete' if semantically valid inferences entail proof-theoretic validity [Enderton]
     Full Idea: If every semantically valid inference is proof-theoretically valid (so that |= entails |-), the proof-theory is said to be 'complete'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.1.7)
5. Theory of Logic / K. Features of Logics / 6. Compactness
Proof in finite subsets is sufficient for proof in an infinite set [Enderton]
     Full Idea: If a wff is tautologically implied by a set of wff's, it is implied by a finite subset of them; and if every finite subset is satisfiable, then so is the whole set of wff's.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: [Enderton's account is more symbolic] He adds that this also applies to models. It is a 'theorem' because it can be proved. It is a major theorem in logic, because it brings the infinite under control, and who doesn't want that?
5. Theory of Logic / K. Features of Logics / 7. Decidability
Expressions are 'decidable' if inclusion in them (or not) can be proved [Enderton]
     Full Idea: A set of expressions is 'decidable' iff there exists an effective procedure (qv) that, given some expression, will decide whether or not the expression is included in the set (i.e. doesn't contradict it).
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.7)
     A reaction: This is obviously a highly desirable feature for a really reliable system of expressions to possess. All finite sets are decidable, but some infinite sets are not.
5. Theory of Logic / K. Features of Logics / 8. Enumerability
For a reasonable language, the set of valid wff's can always be enumerated [Enderton]
     Full Idea: The Enumerability Theorem says that for a reasonable language, the set of valid wff's can be effectively enumerated.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 2.5)
     A reaction: There are criteria for what makes a 'reasonable' language (probably specified to ensure enumerability!). Predicates and functions must be decidable, and the language must be finite.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Mathematics is higher-order modal logic [Hodes]
     Full Idea: I take the view that (agreeing with Aristotle) mathematics only requires the notion of a potential infinity, ...and that mathematics is higher-order modal logic.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: Modern 'modal' accounts of mathematics I take to be heirs of 'if-thenism', which seems to have been Russell's development of Frege's original logicism. I'm beginning to think it is right. But what is the subject-matter of arithmetic?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / f. Arithmetic
Arithmetic must allow for the possibility of only a finite total of objects [Hodes]
     Full Idea: Arithmetic should be able to face boldly the dreadful chance that in the actual world there are only finitely many objects.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.148)
     A reaction: This seems to be a basic requirement for any account of arithmetic, but it was famously a difficulty for early logicism, evaded by making the existence of an infinity of objects into an axiom of the system.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Values that approach zero, becoming less than any quantity, are 'infinitesimals' [Cauchy]
     Full Idea: When the successive absolute values of a variable decrease indefinitely in such a way as to become less than any given quantity, that variable becomes what is called an 'infinitesimal'. Such a variable has zero as its limit.
     From: Augustin-Louis Cauchy (Cours d'Analyse [1821], p.19), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.4
     A reaction: The creator of the important idea of the limit still talked in terms of infinitesimals. In the next generation the limit took over completely.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
When successive variable values approach a fixed value, that is its 'limit' [Cauchy]
     Full Idea: When the values successively attributed to the same variable approach indefinitely a fixed value, eventually differing from it by as little as one could wish, that fixed value is called the 'limit' of all the others.
     From: Augustin-Louis Cauchy (Cours d'Analyse [1821], p.19), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.4
     A reaction: This seems to be a highly significan proposal, because you can now treat that limit as a number, and adds things to it. It opens the door to Cantor's infinities. Is the 'limit' just a fiction?
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
It is claimed that numbers are objects which essentially represent cardinality quantifiers [Hodes]
     Full Idea: The mathematical object-theorist says a number is an object that represents a cardinality quantifier, with the representation relation as the entire essence of the nature of such objects as cardinal numbers like 4.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984])
     A reaction: [compressed] This a classic case of a theory beginning to look dubious once you spell it our precisely. The obvious thought is to make do with the numerical quantifiers, and dispense with the objects. Do other quantifiers need objects to support them?
Numerical terms can't really stand for quantifiers, because that would make them first-level [Hodes]
     Full Idea: The dogmatic Frege is more right than wrong in denying that numerical terms can stand for numerical quantifiers, for there cannot be a language in which object-quantifiers and objects are simultaneously viewed as level zero.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.142)
     A reaction: Subtle. We see why Frege goes on to say that numbers are level zero (i.e. they are objects). We are free, it seems, to rewrite sentences containing number terms to suit whatever logical form appeals. Numbers are just quantifiers?
7. Existence / D. Theories of Reality / 7. Fictionalism
Talk of mirror images is 'encoded fictions' about real facts [Hodes]
     Full Idea: Talk about mirror images is a sort of fictional discourse. Statements 'about' such fictions are not made true or false by our whims; rather they 'encode' facts about the things reflected in mirrors.
     From: Harold Hodes (Logicism and Ontological Commits. of Arithmetic [1984], p.146)
     A reaction: Hodes's proposal for how we should view abstract objects (c.f. Frege and Dummett on 'the equator'). The facts involved are concrete, but Hodes is offering 'encoding fictionalism' as a linguistic account of such abstractions. He applies it to numbers.
10. Modality / B. Possibility / 8. Conditionals / f. Pragmatics of conditionals
Sentences with 'if' are only conditionals if they can read as A-implies-B [Enderton]
     Full Idea: Not all sentences using 'if' are conditionals. Consider 'if you want a banana, there is one in the kitchen'. The rough test is that a conditional can be rewritten as 'that A implies that B'.
     From: Herbert B. Enderton (A Mathematical Introduction to Logic (2nd) [2001], 1.6.4)