Combining Philosophers

All the ideas for B Hale / C Wright, Nicholas P. White and Brian Clegg

unexpand these ideas     |    start again     |     specify just one area for these philosophers


45 ideas

2. Reason / F. Fallacies / 1. Fallacy
It is a fallacy to explain the obscure with the even more obscure [Hale/Wright]
     Full Idea: The fallacy of 'ad obscurum per obscurius' is to explain the obscure by appeal to what is more obscure.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §3)
     A reaction: Not strictly a fallacy, so much as an example of inadequate explanation, along with circularity and infinite regresses.
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
A set is 'well-ordered' if every subset has a first element [Clegg]
     Full Idea: For a set to be 'well-ordered' it is required that every subset of the set has a first element.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory made a closer study of infinity possible [Clegg]
     Full Idea: Set theory made a closer study of infinity possible.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
Any set can always generate a larger set - its powerset, of subsets [Clegg]
     Full Idea: The idea of the 'power set' means that it is always possible to generate a bigger one using only the elements of that set, namely the set of all its subsets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Extensionality: Two sets are equal if and only if they have the same elements [Clegg]
     Full Idea: Axiom of Extension: Two sets are equal if and only if they have the same elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Pairing: For any two sets there exists a set to which they both belong [Clegg]
     Full Idea: Axiom of Pairing: For any two sets there exists a set to which they both belong. So you can make a set out of two other sets.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / d. Axiom of Unions III
Unions: There is a set of all the elements which belong to at least one set in a collection [Clegg]
     Full Idea: Axiom of Unions: For every collection of sets there exists a set that contains all the elements that belong to at least one of the sets in the collection.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
Infinity: There exists a set of the empty set and the successor of each element [Clegg]
     Full Idea: Axiom of Infinity: There exists a set containing the empty set and the successor of each of its elements.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This is rather different from the other axioms because it contains the notion of 'successor', though that can be generated by an ordering procedure.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / g. Axiom of Powers VI
Powers: All the subsets of a given set form their own new powerset [Clegg]
     Full Idea: Axiom of Powers: For each set there exists a collection of sets that contains amongst its elements all the subsets of the given set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: Obviously this must include the whole of the base set (i.e. not just 'proper' subsets), otherwise the new set would just be a duplicate of the base set.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
Choice: For every set a mechanism will choose one member of any non-empty subset [Clegg]
     Full Idea: Axiom of Choice: For every set we can provide a mechanism for choosing one member of any non-empty subset of the set.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: This axiom is unusual because it makes the bold claim that such a 'mechanism' can always be found. Cohen showed that this axiom is separate. The tricky bit is choosing from an infinite subset.
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / k. Axiom of Existence
Axiom of Existence: there exists at least one set [Clegg]
     Full Idea: Axiom of Existence: there exists at least one set. This may be the empty set, but you need to start with something.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / l. Axiom of Specification
Specification: a condition applied to a set will always produce a new set [Clegg]
     Full Idea: Axiom of Specification: For every set and every condition, there corresponds a set whose elements are exactly the same as those elements of the original set for which the condition is true. So the concept 'number is even' produces a set from the integers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
     A reaction: What if the condition won't apply to the set? 'Number is even' presumably won't produce a set if it is applied to a set of non-numbers.
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
Singular terms refer if they make certain atomic statements true [Hale/Wright]
     Full Idea: Anyone should agree that a justification for regarding a singular term as having objectual reference is provided just as soon as one has justification for regarding as true certain atomic statements in which it functions as a singular term.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: The meat of this idea is hidden in the word 'certain'. See Idea 10314 for Hale's explanation. Without that, the proposal strikes me as absurd.
5. Theory of Logic / J. Model Theory in Logic / 3. Löwenheim-Skolem Theorems
Löwenheim-Skolem says any theory with a true interpretation has a model in the natural numbers [White,NP]
     Full Idea: The Löwenheim-Skolem theorem tells us that any theory with a true interpretation has a model in the natural numbers.
     From: Nicholas P. White (What Numbers Are [1974], V)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / c. Grelling's paradox
If 'x is heterological' iff it does not apply to itself, then 'heterological' is heterological if it isn't heterological [Hale/Wright]
     Full Idea: If we stipulate that 'x is heterological' iff it does not apply to itself, we speedily arrive at the contradiction that 'heterological' is itself heterological just in case it is not.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2)
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics can be 'pure' (unapplied), 'real' (physically grounded); or 'applied' (just applicable) [Clegg]
     Full Idea: Three views of mathematics: 'pure' mathematics, where it doesn't matter if it could ever have any application; 'real' mathematics, where every concept must be physically grounded; and 'applied' mathematics, using the non-real if the results are real.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.17)
     A reaction: Very helpful. No one can deny the activities of 'pure' mathematics, but I think it is undeniable that the origins of the subject are 'real' (rather than platonic). We do economics by pretending there are concepts like the 'average family'.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / e. Ordinal numbers
Beyond infinity cardinals and ordinals can come apart [Clegg]
     Full Idea: With ordinary finite numbers ordinals and cardinals are in effect the same, but beyond infinity it is possible for two sets to have the same cardinality but different ordinals.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
An ordinal number is defined by the set that comes before it [Clegg]
     Full Idea: You can think of an ordinal number as being defined by the set that comes before it, so, in the non-negative integers, ordinal 5 is defined as {0, 1, 2, 3, 4}.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.13)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Transcendental numbers can't be fitted to finite equations [Clegg]
     Full Idea: The 'transcendental numbers' are those irrationals that can't be fitted to a suitable finite equation, of which π is far and away the best known.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / k. Imaginary numbers
By adding an axis of imaginary numbers, we get the useful 'number plane' instead of number line [Clegg]
     Full Idea: The realisation that brought 'i' into the toolkit of physicists and engineers was that you could extend the 'number line' into a new dimension, with an imaginary number axis at right angles to it. ...We now have a 'number plane'.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.12)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / l. Zero
Either lack of zero made early mathematics geometrical, or the geometrical approach made zero meaningless [Clegg]
     Full Idea: It is a chicken-and-egg problem, whether the lack of zero forced forced classical mathematicians to rely mostly on a geometric approach to mathematics, or the geometric approach made 0 a meaningless concept, but the two remain strongly tied together.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch. 6)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Finite cardinalities don't need numbers as objects; numerical quantifiers will do [White,NP]
     Full Idea: Statements involving finite cardinalities can be made without treating numbers as objects at all, simply by using quantification and identity to define numerically definite quantifiers in the manner of Frege.
     From: Nicholas P. White (What Numbers Are [1974], IV)
     A reaction: [He adds Quine 1960:268 as a reference]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Cantor's account of infinities has the shaky foundation of irrational numbers [Clegg]
     Full Idea: As far as Kronecker was concerned, Cantor had built a whole structure on the irrational numbers, and so that structure had no foundation at all.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / g. Continuum Hypothesis
The Continuum Hypothesis is independent of the axioms of set theory [Clegg]
     Full Idea: Paul Cohen showed that the Continuum Hypothesis is independent of the axioms of set theory.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.15)
The 'continuum hypothesis' says aleph-one is the cardinality of the reals [Clegg]
     Full Idea: The 'continuum hypothesis' says that aleph-one is the cardinality of the rational and irrational numbers.
     From: Brian Clegg (Infinity: Quest to Think the Unthinkable [2003], Ch.14)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The incompletability of formal arithmetic reveals that logic also cannot be completely characterized [Hale/Wright]
     Full Idea: The incompletability of formal arithmetic reveals, not arithmetical truths which are not truths of logic, but that logical truth likewise defies complete deductive characterization. ...Gödel's result has no specific bearing on the logicist project.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §2 n5)
     A reaction: This is the key defence against the claim that Gödel's First Theorem demolished logicism.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Neo-logicism founds arithmetic on Hume's Principle along with second-order logic [Hale/Wright]
     Full Idea: The result of joining Hume's Principle to second-order logic is a consistent system which is a foundation for arithmetic, in the sense that all the fundamental laws of arithmetic are derivable within it as theorems. This seems a vindication of logicism.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: The controversial part seems to be second-order logic, which Quine (for example) vigorously challenged. The contention against most attempts to improve Frege's logicism is that they thereby cease to be properly logical.
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
The Julius Caesar problem asks for a criterion for the concept of a 'number' [Hale/Wright]
     Full Idea: The Julius Caesar problem is the problem of supplying a criterion of application for 'number', and thereby setting it up as the concept of a genuine sort of object. (Why is Julius Caesar not a number?)
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 3)
     A reaction: One response would be to deny that numbers are objects. Another would be to derive numbers from their application in counting objects, rather than the other way round. I suspect that the problem only real bothers platonists. Serves them right.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
If structures are relative, this undermines truth-value and objectivity [Hale/Wright]
     Full Idea: The relativization of ontology to theory in structuralism can't avoid carrying with it a relativization of truth-value, which would compromise the objectivity which structuralists wish to claim for mathematics.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: This is the attraction of structures which grow out of the physical world, where truth-value is presumably not in dispute.
The structural view of numbers doesn't fit their usage outside arithmetical contexts [Hale/Wright]
     Full Idea: It is not clear how the view that natural numbers are purely intra-structural 'objects' can be squared with the widespread use of numerals outside purely arithmetical contexts.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2 n26)
     A reaction: I don't understand this objection. If they refer to quantity, they are implicitly cardinal. If they name things in a sequence they are implicitly ordinal. All users of numbers have a grasp of the basic structure.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / a. Early logicism
Logicism is only noteworthy if logic has a privileged position in our ontology and epistemology [Hale/Wright]
     Full Idea: It is only if logic is metaphysically and epistemologically privileged that a reduction of mathematical theories to logical ones can be philosophically any more noteworthy than a reduction of any mathematical theory to any other.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 8)
     A reaction: It would be hard to demonstrate this privileged position, though intuitively there is nothing more basic in human rationality. That may be a fact about us, but it doesn't make logic basic to nature, which is where proper reduction should be heading.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The neo-Fregean is more optimistic than Frege about contextual definitions of numbers [Hale/Wright]
     Full Idea: The neo-Fregean takes a more optimistic view than Frege of the prospects for the kind of contextual explanation of the fundamental concepts of arithmetic and analysis (cardinals and reals), which he rejected in 'Grundlagen' 60-68.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], §1)
Logicism might also be revived with a quantificational approach, or an abstraction-free approach [Hale/Wright]
     Full Idea: Two modern approaches to logicism are the quantificational approach of David Bostock, and the abstraction-free approach of Neil Tennant.
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1 n2)
     A reaction: Hale and Wright mention these as alternatives to their own view. I merely catalogue them for further examination. My immediate reaction is that Bostock sounds hopeless and Tennant sounds interesting.
Neo-Fregeanism might be better with truth-makers, rather than quantifier commitment [Hale/Wright]
     Full Idea: A third way has been offered to 'make sense' of neo-Fregeanism: we should reject Quine's well-known criterion of ontological commitment in favour of one based on 'truth-maker theory'.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4 n19)
     A reaction: [The cite Ross Cameron for this] They reject this proposal, on the grounds that truth-maker theory is not sufficient to fix the grounding truth-conditions of statements.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Are neo-Fregeans 'maximalists' - that everything which can exist does exist? [Hale/Wright]
     Full Idea: It is claimed that neo-Fregeans are committed to 'maximalism' - that whatever can exist does.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §4)
     A reaction: [The cite Eklund] They observe that maximalism denies contingent non-existence (of the £20 note I haven't got). There seems to be the related problem of 'hyperinflation', that if abstract objects are generated logically, the process is unstoppable.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / a. Ontological commitment
The identity of Pegasus with Pegasus may be true, despite the non-existence [Hale/Wright]
     Full Idea: Identity is sometimes read so that 'Pegasus is Pegasus' expresses a truth, the non-existence of any winged horse notwithstanding.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §5)
     A reaction: This would give you ontological commitment to truth, without commitment to existence. It undercuts the use of identity statements as the basis of existence claims, which was Frege's strategy.
8. Modes of Existence / B. Properties / 3. Types of Properties
Maybe we have abundant properties for semantics, and sparse properties for ontology [Hale/Wright]
     Full Idea: There is a compatibilist view which says that it is for the abundant properties to play the role of 'bedeutungen' in semantic theory, and the sparse ones to address certain metaphysical concerns.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: Only a philosopher could live with the word 'property' having utterly different extensions in different areas of discourse. They similarly bifurcate words like 'object' and 'exist'. Call properties 'quasi-properties' and I might join in.
8. Modes of Existence / B. Properties / 10. Properties as Predicates
A successful predicate guarantees the existence of a property - the way of being it expresses [Hale/Wright]
     Full Idea: The good standing of a predicate is already trivially sufficient to ensure the existence of an associated property, a (perhaps complex) way of being which the predicate serves to express.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: 'Way of being' is interesting. Is 'being near Trafalgar Sq' a way of being? I take properties to be 'features', which seems to give a clearer way of demarcating them. They say they are talking about 'abundant' (rather than 'sparse') properties.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Objects just are what singular terms refer to [Hale/Wright]
     Full Idea: Objects, as distinct from entities of other types (properties, relations or, more generally, functions of different types and levels), just are what (actual or possible) singular terms refer to.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.1)
     A reaction: I find this view very bizarre and hard to cope with. It seems either to preposterously accept the implications of the way we speak into our ontology ('sakes'?), or preposterously bend the word 'object' away from its normal meaning.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
Abstracted objects are not mental creations, but depend on equivalence between given entities [Hale/Wright]
     Full Idea: The new kind of abstract objects are not creations of the human mind. ...The existence of such objects depends upon whether or not the relevant equivalence relation holds among the entities of the presupposed kind.
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2)
     A reaction: It seems odd that we no longer have any choice about what abstract objects we use, and that we can't evade them if the objects exist, and can't have them if the objects don't exist - and presumably destruction of the objects kills the concept?
One first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines [Hale/Wright]
     Full Idea: An example of a first-order abstraction principle is Frege's definition of 'direction' in terms of parallel lines; a higher-order example (which refers to first-order predicates) defines 'equinumeral' in terms of one-to-one correlation (Hume's Principle).
     From: B Hale / C Wright (Logicism in the 21st Century [2007], 1)
     A reaction: [compressed] This is the way modern logicians now treat abstraction, but abstraction principles include the elusive concept of 'equivalence' of entities, which may be no more than that the same adjective ('parallel') can be applied to them.
Abstractionism needs existential commitment and uniform truth-conditions [Hale/Wright]
     Full Idea: Abstractionism needs a face-value, existentially committed reading of the terms occurring on the left-hand sides together with sameness of truth-conditions across the biconditional.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §5)
     A reaction: They employ 'abstractionism' to mean their logical Fregean strategy for defining abstractions, not to mean the older psychological account. Thus the truth-conditions for being 'parallel' and for having the 'same direction' must be consistent.
Equivalence abstraction refers to objects otherwise beyond our grasp [Hale/Wright]
     Full Idea: Abstraction principles purport to introduce fundamental means of reference to a range of objects, to which there is accordingly no presumption that we have any prior or independent means of reference.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §8)
     A reaction: There's the rub! They make it sound like a virtue, that we open up yet another heaven of abstract toys to play with. As fictions, they are indeed exciting new fun. As platonic discoveries they strike me as Cloud-Cuckoo Land.
19. Language / B. Reference / 4. Descriptive Reference / a. Sense and reference
Reference needs truth as well as sense [Hale/Wright]
     Full Idea: It takes, over and above the possession of sense, the truth of relevant contexts to ensure reference.
     From: B Hale / C Wright (The Metaontology of Abstraction [2009], §9)
     A reaction: Reference purely through sense was discredited by Kripke. The present idea challenges Kripke's baptismal realist approach. How do you 'baptise' an abstract object? But isn't reference needed prior to the establishment of truth?
19. Language / E. Analyticity / 2. Analytic Truths
Many conceptual truths ('yellow is extended') are not analytic, as derived from logic and definitions [Hale/Wright]
     Full Idea: There are many statements which are plausibly viewed as conceptual truths (such as 'what is yellow is extended') which do not qualify as analytic under Frege's definition (as provable using only logical laws and definitions).
     From: B Hale / C Wright (Intro to 'The Reason's Proper Study' [2001], 3.2)
     A reaction: Presumably this is because the early assumptions of Frege were mathematical and logical, and he was trying to get away from Kant. That yellow is extended is a truth for non-linguistic beings.