Combining Philosophers

All the ideas for Bert Leuridan, Keith Lehrer and Graham Priest

unexpand these ideas     |    start again     |     specify just one area for these philosophers


53 ideas

1. Philosophy / C. History of Philosophy / 4. Later European Philosophy / b. Seventeenth century philosophy
Most philosophers start with reality and then examine knowledge; Descartes put the study of knowledge first [Lehrer]
     Full Idea: Some philosophers (e.g Plato) begin with an account of reality, and then appended an account of how we can know it, ..but Descartes turned the tables, insisting that we must first decide what we can know.
     From: Keith Lehrer (Theory of Knowledge (2nd edn) [2000], I p.2)
1. Philosophy / F. Analytic Philosophy / 4. Conceptual Analysis
You cannot demand an analysis of a concept without knowing the purpose of the analysis [Lehrer]
     Full Idea: An analysis is always relative to some objective. It makes no sense to simply demand an analysis of goodness, knowledge, beauty or truth, without some indication of the purpose of the analysis.
     From: Keith Lehrer (Theory of Knowledge (2nd edn) [2000], I p.7)
     A reaction: Your dismantling of a car will go better if you know what a car is for, but you can still take it apart in ignorance.
2. Reason / B. Laws of Thought / 3. Non-Contradiction
Someone standing in a doorway seems to be both in and not-in the room [Priest,G, by Sorensen]
     Full Idea: Priest says there is room for contradictions. He gives the example of someone in a doorway; is he in or out of the room. Given that in and out are mutually exclusive and exhaustive, and neither is the default, he seems to be both in and not in.
     From: report of Graham Priest (What is so bad about Contradictions? [1998]) by Roy Sorensen - Vagueness and Contradiction 4.3
     A reaction: Priest is a clever lad, but I don't think I can go with this. It just seems to be an equivocation on the word 'in' when applied to rooms. First tell me the criteria for being 'in' a room. What is the proposition expressed in 'he is in the room'?
4. Formal Logic / E. Nonclassical Logics / 5. Relevant Logic
A logic is 'relevant' if premise and conclusion are connected, and 'paraconsistent' allows contradictions [Priest,G, by Friend]
     Full Idea: Priest and Routley have developed paraconsistent relevant logic. 'Relevant' logics insist on there being some sort of connection between the premises and the conclusion of an argument. 'Paraconsistent' logics allow contradictions.
     From: report of Graham Priest (works [1998]) by Michčle Friend - Introducing the Philosophy of Mathematics 6.8
     A reaction: Relevance blocks the move of saying that a falsehood implies everything, which sounds good. The offer of paraconsistency is very wicked indeed, and they are very naughty boys for even suggesting it.
4. Formal Logic / E. Nonclassical Logics / 6. Free Logic
Free logic is one of the few first-order non-classical logics [Priest,G]
     Full Idea: Free logic is an unusual example of a non-classical logic which is first-order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], Pref)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / a. Symbols of ST
X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets [Priest,G]
     Full Idea: X1 x X2 x X3... x Xn indicates the 'cartesian product' of those sets, the set of all the n-tuples with its first member in X1, its second in X2, and so on.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.0)
<a,b&62; is a set whose members occur in the order shown [Priest,G]
     Full Idea: <a,b> is a set whose members occur in the order shown; <x1,x2,x3, ..xn> is an 'n-tuple' ordered set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
a ∈ X says a is an object in set X; a ∉ X says a is not in X [Priest,G]
     Full Idea: a ∈ X means that a is a member of the set X, that is, a is one of the objects in X. a ∉ X indicates that a is not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{x; A(x)} is a set of objects satisfying the condition A(x) [Priest,G]
     Full Idea: {x; A(x)} indicates a set of objects which satisfy the condition A(x).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
{a1, a2, ...an} indicates that a set comprising just those objects [Priest,G]
     Full Idea: {a1, a2, ...an} indicates that the set comprises of just those objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
Φ indicates the empty set, which has no members [Priest,G]
     Full Idea: Φ indicates the empty set, which has no members
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
{a} is the 'singleton' set of a (not the object a itself) [Priest,G]
     Full Idea: {a} is the 'singleton' set of a, not to be confused with the object a itself.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
X⊂Y means set X is a 'proper subset' of set Y [Priest,G]
     Full Idea: X⊂Y means set X is a 'proper subset' of set Y (if and only if all of its members are members of Y, but some things in Y are not in X)
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X⊆Y means set X is a 'subset' of set Y [Priest,G]
     Full Idea: X⊆Y means set X is a 'subset' of set Y (if and only if all of its members are members of Y).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X = Y means the set X equals the set Y [Priest,G]
     Full Idea: X = Y means the set X equals the set Y, which means they have the same members (i.e. X⊆Y and Y⊆X).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
X ∩ Y indicates the 'intersection' of sets X and Y, the objects which are in both sets [Priest,G]
     Full Idea: X ∩ Y indicates the 'intersection' of sets X and Y, which is a set containing just those things that are in both X and Y.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
X∪Y indicates the 'union' of all the things in sets X and Y [Priest,G]
     Full Idea: X ∪ Y indicates the 'union' of sets X and Y, which is a set containing just those things that are in X or Y (or both).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
Y - X is the 'relative complement' of X with respect to Y; the things in Y that are not in X [Priest,G]
     Full Idea: Y - X indicates the 'relative complement' of X with respect to Y, that is, all the things in Y that are not in X.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'relative complement' is things in the second set not in the first [Priest,G]
     Full Idea: The 'relative complement' of one set with respect to another is the things in the second set that aren't in the first.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'intersection' of two sets is a set of the things that are in both sets [Priest,G]
     Full Idea: The 'intersection' of two sets is a set containing the things that are in both sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'union' of two sets is a set containing all the things in either of the sets [Priest,G]
     Full Idea: The 'union' of two sets is a set containing all the things in either of the sets
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.8)
The 'induction clause' says complex formulas retain the properties of their basic formulas [Priest,G]
     Full Idea: The 'induction clause' says that whenever one constructs more complex formulas out of formulas that have the property P, the resulting formulas will also have that property.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.2)
An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order [Priest,G]
     Full Idea: An 'ordered pair' (or ordered n-tuple) is a set with its members in a particular order.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets [Priest,G]
     Full Idea: A 'cartesian product' of sets is the set of all the n-tuples with one member in each of the sets.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.10)
A 'set' is a collection of objects [Priest,G]
     Full Idea: A 'set' is a collection of objects.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
The 'empty set' or 'null set' has no members [Priest,G]
     Full Idea: The 'empty set' or 'null set' is a set with no members.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A set is a 'subset' of another set if all of its members are in that set [Priest,G]
     Full Idea: A set is a 'subset' of another set if all of its members are in that set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'proper subset' is smaller than the containing set [Priest,G]
     Full Idea: A set is a 'proper subset' of another set if some things in the large set are not in the smaller set
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
A 'singleton' is a set with only one member [Priest,G]
     Full Idea: A 'singleton' is a set with only one member.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.4)
A 'member' of a set is one of the objects in the set [Priest,G]
     Full Idea: A 'member' of a set is one of the objects in the set.
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.2)
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / c. Basic theorems of ST
The empty set Φ is a subset of every set (including itself) [Priest,G]
     Full Idea: The empty set Φ is a subset of every set (including itself).
     From: Graham Priest (Intro to Non-Classical Logic (1st ed) [2001], 0.1.6)
5. Theory of Logic / L. Paradox / 1. Paradox
Typically, paradoxes are dealt with by dividing them into two groups, but the division is wrong [Priest,G]
     Full Idea: A natural principle is the same kind of paradox will have the same kind of solution. Standardly Ramsey's first group are solved by denying the existence of some totality, and the second group are less clear. But denial of the groups sink both.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §5)
     A reaction: [compressed] This sums up the argument of Priest's paper, which is that it is Ramsey's division into two kinds (see Idea 13334) which is preventing us from getting to grips with the paradoxes. Priest, notoriously, just lives with them.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / b. König's paradox
The 'least indefinable ordinal' is defined by that very phrase [Priest,G]
     Full Idea: König: there are indefinable ordinals, and the least indefinable ordinal has just been defined in that very phrase. (Recall that something is definable iff there is a (non-indexical) noun-phrase that refers to it).
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: Priest makes great subsequent use of this one, but it feels like a card trick. 'Everything indefinable has now been defined' (by the subject of this sentence)? König, of course, does manage to pick out one particular object.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
'x is a natural number definable in less than 19 words' leads to contradiction [Priest,G]
     Full Idea: Berry: if we take 'x is a natural number definable in less than 19 words', we can generate a number which is and is not one of these numbers.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [not enough space to spell this one out in full]
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / d. Richard's paradox
By diagonalization we can define a real number that isn't in the definable set of reals [Priest,G]
     Full Idea: Richard: φ(x) is 'x is a definable real number between 0 and 1' and ψ(x) is 'x is definable'. We can define a real by diagonalization so that it is not in x. It is and isn't in the set of reals.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §3)
     A reaction: [this isn't fully clear here because it is compressed]
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / c. Burali-Forti's paradox
The least ordinal greater than the set of all ordinals is both one of them and not one of them [Priest,G]
     Full Idea: Burali-Forti: φ(x) is 'x is an ordinal', and so w is the set of all ordinals, On; δ(x) is the least ordinal greater than every member of x (abbreviation: log(x)). The contradiction is that log(On)∈On and log(On)∉On.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 5. Paradoxes in Set Theory / e. Mirimanoff's paradox
The next set up in the hierarchy of sets seems to be both a member and not a member of it [Priest,G]
     Full Idea: Mirimanoff: φ(x) is 'x is well founded', so that w is the cumulative hierarchy of sets, V; &delta(x) is just the power set of x, P(x). If x⊆V, then V∈V and V∉V, since δ(V) is just V itself.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §2)
5. Theory of Logic / L. Paradox / 6. Paradoxes in Language / a. The Liar paradox
If you know that a sentence is not one of the known sentences, you know its truth [Priest,G]
     Full Idea: In the family of the Liar is the Knower Paradox, where φ(x) is 'x is known to be true', and there is a set of known things, Kn. By knowing a sentence is not in the known sentences, you know its truth.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [mostly my wording]
There are Liar Pairs, and Liar Chains, which fit the same pattern as the basic Liar [Priest,G]
     Full Idea: There are liar chains which fit the pattern of Transcendence and Closure, as can be seen with the simplest case of the Liar Pair.
     From: Graham Priest (The Structure of Paradoxes of Self-Reference [1994], §4)
     A reaction: [Priest gives full details] Priest's idea is that Closure is when a set is announced as complete, and Transcendence is when the set is forced to expand. He claims that the two keep coming into conflict.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / a. Coherence as justification
Justification is coherence with a background system; if irrefutable, it is knowledge [Lehrer]
     Full Idea: Justification is coherence with a background system which, when irrefutable, converts to knowledge.
     From: Keith Lehrer (Consciousness,Represn, and Knowledge [2006])
     A reaction: A problem (as the theory stands here) would be whether you have to be aware that the coherence is irrefutable, which would seem to require a pretty powerful intellect. If one needn't be aware of the irrefutability, how does it help my justification?
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Generalisations must be invariant to explain anything [Leuridan]
     Full Idea: A generalisation is explanatory if and only if it is invariant.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §4)
     A reaction: [He cites Jim Woodward 2003] I dislike the idea that generalisations and regularities explain anything at all, but this rule sounds like a bare minimum for being taken seriously in the space of explanations.
14. Science / D. Explanation / 2. Types of Explanation / h. Explanations by function
Biological functions are explained by disposition, or by causal role [Leuridan]
     Full Idea: The main alternative to the dispositional theory of biological functions (which confer a survival-enhancing propensity) is the etiological theory (effects are functions if they play a role in the causal history of that very component).
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §3)
     A reaction: [Bigelow/Pargetter 1987 for the first, Mitchell 2003 for the second] The second one sounds a bit circular, but on the whole a I prefer causal explanations to dispositional explanations.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Mechanisms must produce macro-level regularities, but that needs micro-level regularities [Leuridan]
     Full Idea: Nothing can count as a mechanism unless it produces some macro-level regular behaviour. To produce macro-level regular behaviour, it has to rely on micro-level regularities.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §5)
     A reaction: This is the core of Leuridan's argument that regularities are more basic than mechanisms. It doesn't follow, though, that the more basic a thing is the more explanatory work it can do. I say mechanisms explain more than low-level regularities do.
Mechanisms are ontologically dependent on regularities [Leuridan]
     Full Idea: Mechanisms are ontologically dependent on the existence of regularities.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §3)
     A reaction: This seems to be the Humean rearguard action in favour of the regularity account of laws. Wrong, but a nice paper. This point shows why only powers (despite their vagueness!) are the only candidate for the bottom level of explanation.
Mechanisms can't explain on their own, as their models rest on pragmatic regularities [Leuridan]
     Full Idea: To model a mechanism one must incorporate pragmatic laws. ...As valuable as the concept of mechanism and mechanistic explanation are, they cannot replace regularities nor undermine their relevance for scientific explanation.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1)
     A reaction: [See Idea 12786 for 'pragmatic laws'] I just don't see how the observation of a regularity is any sort of explanation. I just take a regularity to be something interesting which needs to be explained.
We can show that regularities and pragmatic laws are more basic than mechanisms [Leuridan]
     Full Idea: Summary: mechanisms depend on regularities, there may be regularities without mechanisms, models of mechanisms must incorporate pragmatic laws, and pragmatic laws do not depend epistemologically on mechanistic models.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1)
     A reaction: See Idea 14382 for 'pragmatic' laws. I'm quite keen on mechanisms, so this is an arrow close to the heart, but at this point I say that my ultimate allegiance is to powers, not to mechanisms.
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
There is nothing wrong with an infinite regress of mechanisms and regularities [Leuridan]
     Full Idea: I see nothing metaphysically wrong in an infinite ontological regress of mechanisms and regularities.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §5)
     A reaction: This is a pretty unusual view, and I can't accept it. My revulsion at this regress is precisely the reason why I believe in powers, as the bottom level of explanation.
15. Nature of Minds / C. Capacities of Minds / 5. Generalisation by mind
Generalization seems to be more fundamental to minds than spotting similarities [Lehrer]
     Full Idea: There is a level of generalization we share with other animals in the responses to objects that suggest that generalization is a more fundamental operation of the mind than the observation of similarities.
     From: Keith Lehrer (Consciousness,Represn, and Knowledge [2006])
     A reaction: He derives this from Reid (1785) - Lehrer's hero - who argued against Hume that we couldn't spot similarities if we hadn't already generalized to produce the 'respect' of the similarity. Interesting. I think Reid must be right.
16. Persons / C. Self-Awareness / 1. Introspection
All conscious states can be immediately known when attention is directed to them [Lehrer]
     Full Idea: I am inclined to think that all conscious states can be immediately known when attention is directed to them.
     From: Keith Lehrer (Consciousness,Represn, and Knowledge [2006])
     A reaction: This strikes me as a very helpful suggestion, for eliminating lots of problem cases for introspective knowledge which have been triumphally paraded in recent times. It might, though, be tautological, if it is actually a definition of 'conscious states'.
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Rather than dispositions, functions may be the element that brought a thing into existence [Leuridan]
     Full Idea: The dispositional theory of biological functions is not unquestioned. The main alternative is the etiological theory: a component's effect is a function of that component if it has played an essential role in the causal history of its existence.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §3)
     A reaction: [He cites S.D. Mitchell 2003] Presumably this account is meant to fit into a theory of evolution in biology. The obvious problem is where something comes into existence for one reason, and then acquires a new function (such as piano-playing).
26. Natural Theory / D. Laws of Nature / 3. Laws and Generalities
Pragmatic laws allow prediction and explanation, to the extent that reality is stable [Leuridan]
     Full Idea: A generalization is a 'pragmatic law' if it allows of prediction, explanation and manipulation, even if it fails to satisfy the traditional criteria. To this end, it should describe a stable regularity, but not necessarily a universal and necessary one.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1)
     A reaction: I am tempted to say of this that all laws are pragmatic, given that it is rather hard to know whether reality is stable. The universal laws consist of saying that IF reality stays stable in certain ways, certain outcomes will ensue necessarily.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
Strict regularities are rarely discovered in life sciences [Leuridan]
     Full Idea: Strict regularities are rarely if ever discovered in the life sciences.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §2)
     A reaction: This is elementary once it is pointed out, but too much philosophy have science has aimed at the model provided by the equations of fundamental physics. Science is a broad church, to employ an entertaining metaphor.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
A 'law of nature' is just a regularity, not some entity that causes the regularity [Leuridan]
     Full Idea: By 'law of nature' or 'natural law' I mean a generalization describing a regularity, not some metaphysical entity that produces or is responsible for that regularity.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1 n1)
     A reaction: I take the second version to be a relic of a religious world view, and having no place in a naturalistic metaphysic. The regularity view is then the only player in the field, and the question is, can we do more? Can't we explain regularities?