Combining Philosophers

All the ideas for Bert Leuridan, Michael Stanford and David Hilbert

unexpand these ideas     |    start again     |     specify just one area for these philosophers


43 ideas

3. Truth / G. Axiomatic Truth / 1. Axiomatic Truth
If axioms and their implications have no contradictions, they pass my criterion of truth and existence [Hilbert]
     Full Idea: If the arbitrarily given axioms do not contradict each other with all their consequences, then they are true and the things defined by the axioms exist. For me this is the criterion of truth and existence.
     From: David Hilbert (Letter to Frege 29.12.1899 [1899]), quoted by R Kaplan / E Kaplan - The Art of the Infinite 2 'Mind'
     A reaction: If an axiom says something equivalent to 'fairies exist, but they are totally undetectable', this would seem to avoid contradiction with anything, and hence be true. Hilbert's idea sounds crazy to me. He developed full Formalism later.
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
You would cripple mathematics if you denied Excluded Middle [Hilbert]
     Full Idea: Taking the principle of Excluded Middle away from the mathematician would be the same, say, as prohibiting the astronomer from using the telescope or the boxer from using his fists.
     From: David Hilbert (The Foundations of Mathematics [1927], p.476), quoted by Ian Rumfitt - The Boundary Stones of Thought 9.4
     A reaction: [p.476 in Van Heijenoort]
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
The facts of geometry, arithmetic or statics order themselves into theories [Hilbert]
     Full Idea: The facts of geometry order themselves into a geometry, the facts of arithmetic into a theory of numbers, the facts of statics, electrodynamics into a theory of statics, electrodynamics, or the facts of the physics of gases into a theory of gases.
     From: David Hilbert (Axiomatic Thought [1918], [03])
     A reaction: This is the confident (I would say 'essentialist') view of axioms, which received a bit of a setback with Gödel's Theorems. I certainly agree that the world proposes an order to us - we don't just randomly invent one that suits us.
Axioms must reveal their dependence (or not), and must be consistent [Hilbert]
     Full Idea: If a theory is to serve its purpose of orienting and ordering, it must first give us an overview of the independence and dependence of its propositions, and second give a guarantee of the consistency of all of the propositions.
     From: David Hilbert (Axiomatic Thought [1918], [09])
     A reaction: Gödel's Second theorem showed that the theory can never prove its own consistency, which made the second Hilbert requirement more difficult. It is generally assumed that each of the axioms must be independent of the others.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Hilbert wanted to prove the consistency of all of mathematics (which realists take for granted) [Hilbert, by Friend]
     Full Idea: Hilbert wanted to derive ideal mathematics from the secure, paradox-free, finite mathematics (known as 'Hilbert's Programme'). ...Note that for the realist consistency is not something we need to prove; it is a precondition of thought.
     From: report of David Hilbert (works [1900], 6.7) by Michèle Friend - Introducing the Philosophy of Mathematics
     A reaction: I am an intuitive realist, though I am not so sure about that on cautious reflection. Compare the claims that there are reasons or causes for everything. Reality cannot contain contradicitions (can it?). Contradictions would be our fault.
I aim to establish certainty for mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is the clearest statement of the famous Hilbert Programme, which is said to have been brought to an abrupt end by Gödel's Incompleteness Theorems.
We believe all mathematical problems are solvable [Hilbert]
     Full Idea: The thesis that every mathematical problem is solvable - we are all convinced that it really is so.
     From: David Hilbert (On the Infinite [1925], p.200)
     A reaction: This will include, for example, Goldbach's Conjecture (every even is the sum of two primes), which is utterly simple but with no proof anywhere in sight.
6. Mathematics / A. Nature of Mathematics / 2. Geometry
Hilbert aimed to eliminate number from geometry [Hilbert, by Hart,WD]
     Full Idea: One of Hilbert's aims in 'The Foundations of Geometry' was to eliminate number [as measure of lengths and angles] from geometry.
     From: report of David Hilbert (Foundations of Geometry [1899]) by William D. Hart - The Evolution of Logic 2
     A reaction: Presumably this would particularly have to include the elimination of ratios (rather than actual specific lengths).
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
No one shall drive us out of the paradise the Cantor has created for us [Hilbert]
     Full Idea: No one shall drive us out of the paradise the Cantor has created for us.
     From: David Hilbert (On the Infinite [1925], p.191), quoted by James Robert Brown - Philosophy of Mathematics
     A reaction: This is Hilbert's famous refusal to accept any account of mathematics, such as Kant's, which excludes actual infinities. Cantor had laid out a whole glorious hierarchy of different infinities.
We extend finite statements with ideal ones, in order to preserve our logic [Hilbert]
     Full Idea: To preserve the simple formal rules of ordinary Aristotelian logic, we must supplement the finitary statements with ideal statements.
     From: David Hilbert (On the Infinite [1925], p.195)
     A reaction: I find very appealing the picture of mathematics as rooted in the physical world, and then gradually extended by a series of 'idealisations', which should perhaps be thought of as fictions.
Only the finite can bring certainty to the infinite [Hilbert]
     Full Idea: Operating with the infinite can be made certain only by the finitary.
     From: David Hilbert (On the Infinite [1925], p.201)
     A reaction: See 'Compactness' for one aspect of this claim. I think Hilbert was fighting a rearguard action, and his idea now has few followers.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The idea of an infinite totality is an illusion [Hilbert]
     Full Idea: Just as in the limit processes of the infinitesimal calculus, the infinitely large and small proved to be a mere figure of speech, so too we must realise that the infinite in the sense of an infinite totality, used in deductive methods, is an illusion.
     From: David Hilbert (On the Infinite [1925], p.184)
     A reaction: This is a very authoritative rearguard action. I no longer think the dispute matters much, it being just a dispute over a proposed new meaning for the word 'number'.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / j. Infinite divisibility
There is no continuum in reality to realise the infinitely small [Hilbert]
     Full Idea: A homogeneous continuum which admits of the sort of divisibility needed to realise the infinitely small is nowhere to be found in reality.
     From: David Hilbert (On the Infinite [1925], p.186)
     A reaction: He makes this remark as a response to Planck's new quantum theory (the year before the big works of Heisenberg and Schrödinger). Personally I don't see why infinities should depend on the physical world, since they are imaginary.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
To decide some questions, we must study the essence of mathematical proof itself [Hilbert]
     Full Idea: It is necessary to study the essence of mathematical proof itself if one wishes to answer such questions as the one about decidability in a finite number of operations.
     From: David Hilbert (Axiomatic Thought [1918], [53])
6. Mathematics / B. Foundations for Mathematics / 3. Axioms for Geometry
Euclid axioms concerns possibilities of construction, but Hilbert's assert the existence of objects [Hilbert, by Chihara]
     Full Idea: Hilbert's geometrical axioms were existential in character, asserting the existence of certain geometrical objects (points and lines). Euclid's postulates do not assert the existence of anything; they assert the possibility of certain constructions.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Charles Chihara - A Structural Account of Mathematics 01.1
     A reaction: Chihara says geometry was originally understood modally, but came to be understood existentially. It seems extraordinary to me that philosophers of mathematics can have become more platonist over the centuries.
Hilbert's formalisation revealed implicit congruence axioms in Euclid [Hilbert, by Horsten/Pettigrew]
     Full Idea: In his formal investigation of Euclidean geometry, Hilbert uncovered congruence axioms that implicitly played a role in Euclid's proofs but were not explicitly recognised.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Horsten,L/Pettigrew,R - Mathematical Methods in Philosophy 2
     A reaction: The writers are offering this as a good example of the benefits of a precise and formal approach to foundational questions. It's hard to disagree, but dispiriting if you need a PhD in maths before you can start doing philosophy.
Hilbert's geometry is interesting because it captures Euclid without using real numbers [Hilbert, by Field,H]
     Full Idea: Hilbert's formulation of the Euclidean theory is of special interest because (besides being rigorously axiomatised) it does not employ the real numbers in the axioms.
     From: report of David Hilbert (Foundations of Geometry [1899]) by Hartry Field - Science without Numbers 3
     A reaction: Notice that this job was done by Hilbert, and not by the fictionalist Hartry Field.
The whole of Euclidean geometry derives from a basic equation and transformations [Hilbert]
     Full Idea: The linearity of the equation of the plane and of the orthogonal transformation of point-coordinates is completely adequate to produce the whole broad science of spatial Euclidean geometry purely by means of analysis.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This remark comes from the man who succeeded in producing modern axioms for geometry (in 1897), so he knows what he is talking about. We should not be wholly pessimistic about Hilbert's ambitious projects. He had to dig deeper than this idea...
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / a. Axioms for numbers
Number theory just needs calculation laws and rules for integers [Hilbert]
     Full Idea: The laws of calculation and the rules of integers suffice for the construction of number theory.
     From: David Hilbert (Axiomatic Thought [1918], [05])
     A reaction: This is the confident Hilbert view that the whole system can be fully spelled out. Gödel made this optimism more difficult.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
The existence of an arbitrarily large number refutes the idea that numbers come from experience [Hilbert]
     Full Idea: The standpoint of pure experience seems to me to be refuted by the objection that the existence, possible or actual, of an arbitrarily large number can never be derived through experience, that is, through experiment.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.130)
     A reaction: Alternatively, empiricism refutes infinite numbers! No modern mathematician will accept that, but you wonder in what sense the proposed entities qualify as 'numbers'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logic already contains some arithmetic, so the two must be developed together [Hilbert]
     Full Idea: In the traditional exposition of the laws of logic certain fundamental arithmetic notions are already used, for example in the notion of set, and to some extent also of number. Thus we turn in a circle, and a partly simultaneous development is required.
     From: David Hilbert (On the Foundations of Logic and Arithmetic [1904], p.131)
     A reaction: If the Axiom of Infinity is meant, it may be possible to purge the arithmetic from the logic. Then the challenge to derive arithmetic from it becomes rather tougher.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
The grounding of mathematics is 'in the beginning was the sign' [Hilbert]
     Full Idea: The solid philosophical attitude that I think is required for the grounding of pure mathematics is this: In the beginning was the sign.
     From: David Hilbert (works [1900]), quoted by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Why did people invent those particular signs? Presumably they were meant to designate something, in the world or in our experience.
Hilbert substituted a syntactic for a semantic account of consistency [Hilbert, by George/Velleman]
     Full Idea: Hilbert replaced a semantic construal of inconsistency (that the theory entails a statement that is necessarily false) by a syntactic one (that the theory formally derives the statement (0 =1 ∧ 0 not-= 1).
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: Finding one particular clash will pinpoint the notion of inconsistency, but it doesn't seem to define what it means, since the concept has very wide application.
Hilbert said (to block paradoxes) that mathematical existence is entailed by consistency [Hilbert, by Potter]
     Full Idea: Hilbert proposed to circuvent the paradoxes by means of the doctrine (already proposed by Poincaré) that in mathematics consistency entails existence.
     From: report of David Hilbert (On the Concept of Number [1900], p.183) by Michael Potter - The Rise of Analytic Philosophy 1879-1930 19 'Exist'
     A reaction: Interesting. Hilbert's idea has struck me as weird, but it makes sense if its main motive is to block the paradoxes. Roughly, the idea is 'it exists if it isn't paradoxical'. A low bar for existence (but then it is only in mathematics!).
The subject matter of mathematics is immediate and clear concrete symbols [Hilbert]
     Full Idea: The subject matter of mathematics is the concrete symbols themselves whose structure is immediately clear and recognisable.
     From: David Hilbert (On the Infinite [1925], p.192)
     A reaction: I don't think many people will agree with Hilbert here. Does he mean token-symbols or type-symbols? You can do maths in your head, or with different symbols. If type-symbols, you have to explain what a type is.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Hilbert aimed to prove the consistency of mathematics finitely, to show infinities won't produce contradictions [Hilbert, by George/Velleman]
     Full Idea: Hilbert's project was to establish the consistency of classical mathematics using just finitary means, to convince all parties that no contradictions will follow from employing the infinitary notions and reasoning.
     From: report of David Hilbert (works [1900]) by A.George / D.J.Velleman - Philosophies of Mathematics Ch.6
     A reaction: This is the project which was badly torpedoed by Gödel's Second Incompleteness Theorem.
Mathematics divides in two: meaningful finitary statements, and empty idealised statements [Hilbert]
     Full Idea: We can conceive mathematics to be a stock of two kinds of formulas: first, those to which the meaningful communications of finitary statements correspond; and secondly, other formulas which signify nothing and which are ideal structures of our theory.
     From: David Hilbert (On the Infinite [1925], p.196), quoted by David Bostock - Philosophy of Mathematics 6.1
11. Knowledge Aims / B. Certain Knowledge / 1. Certainty
My theory aims at the certitude of mathematical methods [Hilbert]
     Full Idea: The goal of my theory is to establish once and for all the certitude of mathematical methods.
     From: David Hilbert (On the Infinite [1925], p.184), quoted by James Robert Brown - Philosophy of Mathematics Ch.5
     A reaction: This dream is famous for being shattered by Gödel's Incompleteness Theorem a mere six years later. Neverless there seem to be more limited certainties which are accepted in mathematics. The certainty of the whole of arithmetic is beyond us.
14. Science / D. Explanation / 1. Explanation / b. Aims of explanation
Audience-relative explanation, or metaphysical explanation based on information? [Stanford]
     Full Idea: Rather than an 'interest-relative' notion of explanation (Putnam), it can be informational content which makes an explanation, which is an 'audience-invariant' contraint, which is not pragmatic, but mainly epistemological and also partly metaphysical.
     From: Michael Stanford (Explanation: the state of play [1991], p.172)
     A reaction: [compressed summary of Ruben 1990] Examples given are that Rome burning explains Nero fiddling, even if no one ever says so, and learning that George III had porphyria explains his madness.
Explanation is for curiosity, control, understanding, to make meaningful, or to give authority [Stanford]
     Full Idea: There are a number of reasons why we explain: out of sheer curiosity, to increase our control of a situation, to help understanding by simplifying or making familiar, to confer meaning or significance, and to give scientific authority to some statement.
     From: Michael Stanford (Explanation: the state of play [1991], p.172)
14. Science / D. Explanation / 2. Types of Explanation / e. Lawlike explanations
Generalisations must be invariant to explain anything [Leuridan]
     Full Idea: A generalisation is explanatory if and only if it is invariant.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §4)
     A reaction: [He cites Jim Woodward 2003] I dislike the idea that generalisations and regularities explain anything at all, but this rule sounds like a bare minimum for being taken seriously in the space of explanations.
14. Science / D. Explanation / 2. Types of Explanation / h. Explanations by function
Biological functions are explained by disposition, or by causal role [Leuridan]
     Full Idea: The main alternative to the dispositional theory of biological functions (which confer a survival-enhancing propensity) is the etiological theory (effects are functions if they play a role in the causal history of that very component).
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §3)
     A reaction: [Bigelow/Pargetter 1987 for the first, Mitchell 2003 for the second] The second one sounds a bit circular, but on the whole a I prefer causal explanations to dispositional explanations.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Mechanisms must produce macro-level regularities, but that needs micro-level regularities [Leuridan]
     Full Idea: Nothing can count as a mechanism unless it produces some macro-level regular behaviour. To produce macro-level regular behaviour, it has to rely on micro-level regularities.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §5)
     A reaction: This is the core of Leuridan's argument that regularities are more basic than mechanisms. It doesn't follow, though, that the more basic a thing is the more explanatory work it can do. I say mechanisms explain more than low-level regularities do.
Mechanisms are ontologically dependent on regularities [Leuridan]
     Full Idea: Mechanisms are ontologically dependent on the existence of regularities.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §3)
     A reaction: This seems to be the Humean rearguard action in favour of the regularity account of laws. Wrong, but a nice paper. This point shows why only powers (despite their vagueness!) are the only candidate for the bottom level of explanation.
Mechanisms can't explain on their own, as their models rest on pragmatic regularities [Leuridan]
     Full Idea: To model a mechanism one must incorporate pragmatic laws. ...As valuable as the concept of mechanism and mechanistic explanation are, they cannot replace regularities nor undermine their relevance for scientific explanation.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1)
     A reaction: [See Idea 12786 for 'pragmatic laws'] I just don't see how the observation of a regularity is any sort of explanation. I just take a regularity to be something interesting which needs to be explained.
We can show that regularities and pragmatic laws are more basic than mechanisms [Leuridan]
     Full Idea: Summary: mechanisms depend on regularities, there may be regularities without mechanisms, models of mechanisms must incorporate pragmatic laws, and pragmatic laws do not depend epistemologically on mechanistic models.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1)
     A reaction: See Idea 14382 for 'pragmatic' laws. I'm quite keen on mechanisms, so this is an arrow close to the heart, but at this point I say that my ultimate allegiance is to powers, not to mechanisms.
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
We can explain by showing constitution, as well as showing causes [Stanford]
     Full Idea: The powerful engine of my car can be explained by an examination of each of its parts, but it is not caused by them. They do not cause the engine; they constitute it.
     From: Michael Stanford (Explanation: the state of play [1991], p.174)
     A reaction: [example from Ruben 1990:221] This could be challenged, since there is clearly a causal connection between the constitution and the whole. We distinguish engine parts which contribute to the power from those which do not.
14. Science / D. Explanation / 3. Best Explanation / b. Ultimate explanation
There is nothing wrong with an infinite regress of mechanisms and regularities [Leuridan]
     Full Idea: I see nothing metaphysically wrong in an infinite ontological regress of mechanisms and regularities.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §5)
     A reaction: This is a pretty unusual view, and I can't accept it. My revulsion at this regress is precisely the reason why I believe in powers, as the bottom level of explanation.
26. Natural Theory / A. Speculations on Nature / 3. Natural Function
Rather than dispositions, functions may be the element that brought a thing into existence [Leuridan]
     Full Idea: The dispositional theory of biological functions is not unquestioned. The main alternative is the etiological theory: a component's effect is a function of that component if it has played an essential role in the causal history of its existence.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §3)
     A reaction: [He cites S.D. Mitchell 2003] Presumably this account is meant to fit into a theory of evolution in biology. The obvious problem is where something comes into existence for one reason, and then acquires a new function (such as piano-playing).
26. Natural Theory / D. Laws of Nature / 3. Laws and Generalities
Pragmatic laws allow prediction and explanation, to the extent that reality is stable [Leuridan]
     Full Idea: A generalization is a 'pragmatic law' if it allows of prediction, explanation and manipulation, even if it fails to satisfy the traditional criteria. To this end, it should describe a stable regularity, but not necessarily a universal and necessary one.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1)
     A reaction: I am tempted to say of this that all laws are pragmatic, given that it is rather hard to know whether reality is stable. The universal laws consist of saying that IF reality stays stable in certain ways, certain outcomes will ensue necessarily.
26. Natural Theory / D. Laws of Nature / 4. Regularities / a. Regularity theory
Strict regularities are rarely discovered in life sciences [Leuridan]
     Full Idea: Strict regularities are rarely if ever discovered in the life sciences.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §2)
     A reaction: This is elementary once it is pointed out, but too much philosophy have science has aimed at the model provided by the equations of fundamental physics. Science is a broad church, to employ an entertaining metaphor.
26. Natural Theory / D. Laws of Nature / 8. Scientific Essentialism / d. Knowing essences
By digging deeper into the axioms we approach the essence of sciences, and unity of knowedge [Hilbert]
     Full Idea: By pushing ahead to ever deeper layers of axioms ...we also win ever-deeper insights into the essence of scientific thought itself, and become ever more conscious of the unity of our knowledge.
     From: David Hilbert (Axiomatic Thought [1918], [56])
     A reaction: This is the less fashionable idea that scientific essentialism can also be applicable in the mathematic sciences, centring on the project of axiomatisation for logic, arithmetic, sets etc.
26. Natural Theory / D. Laws of Nature / 11. Against Laws of Nature
A 'law of nature' is just a regularity, not some entity that causes the regularity [Leuridan]
     Full Idea: By 'law of nature' or 'natural law' I mean a generalization describing a regularity, not some metaphysical entity that produces or is responsible for that regularity.
     From: Bert Leuridan (Can Mechanisms Replace Laws of Nature? [2010], §1 n1)
     A reaction: I take the second version to be a relic of a religious world view, and having no place in a naturalistic metaphysic. The regularity view is then the only player in the field, and the question is, can we do more? Can't we explain regularities?