Combining Philosophers

All the ideas for Cardinal/Hayward/Jones, W Kneale / M Kneale and Brian R. Martin

unexpand these ideas     |    start again     |     specify just one area for these philosophers


21 ideas

4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / f. Axiom of Infinity V
The axiom of infinity is not a truth of logic, and its adoption is an abandonment of logicism [Kneale,W and M]
     Full Idea: There is something profoundly unsatisfactory about the axiom of infinity. It cannot be described as a truth of logic in any reasonable use of that phrase, and so the introduction of it as a primitive proposition amounts to the abandonment of logicism.
     From: W Kneale / M Kneale (The Development of Logic [1962], XI.2)
     A reaction: It seems that the axiom is essentially empirical, and it certainly makes an existential claim which seems to me (intuitively) to have nothing to do with logic at all.
11. Knowledge Aims / C. Knowing Reality / 2. Phenomenalism
The phenomenalist says that to be is to be perceivable [Cardinal/Hayward/Jones]
     Full Idea: Where the idealist says that to be (i.e. to exist) is to be perceived, the phenomenalist says that to be is to be perceivable.
     From: Cardinal/Hayward/Jones (Epistemology [2004], Ch.4)
     A reaction: This is a nice phenomenalist slogan to add to Mill's well known one (Idea 3583). Expressed in this form, it looks false to me. What about neutrinoes? They weren't at all perceivable until recently. Maybe some physical stuff can never be perceived.
Linguistic phenomenalism says we can eliminate talk of physical objects [Cardinal/Hayward/Jones]
     Full Idea: Linguistic phenomenalism argues that it is possible to remove all talk of physical objects from our speech with no loss of meaning.
     From: Cardinal/Hayward/Jones (Epistemology [2004], Ch.4)
     A reaction: I find this proposal unappealing. My basic objection is that I cannot understand why anyone would refuse to even contemplate the question of WHY I am having a given group of consistent experiences, of (say) a table kind.
If we lack enough sense-data, are we to say that parts of reality are 'indeterminate'? [Cardinal/Hayward/Jones]
     Full Idea: The problem with taking sense-data as basic is that some data can appear indeterminate. If we can't discern the colour of someone's eyes, or the number of sides of a complex figure, are we to say that there is no fact about those things?
     From: Cardinal/Hayward/Jones (Epistemology [2004], Ch.4)
     A reaction: I like that. How many electrons are there in the sun? Such things cannot just be reduced to talk of sense-data, as there is obviously a vast gap between the data and the facts. As usual, ontology and epistemology must be kept separate.
12. Knowledge Sources / B. Perception / 2. Qualities in Perception / c. Primary qualities
Primary qualities can be described mathematically, unlike secondary qualities [Cardinal/Hayward/Jones]
     Full Idea: All the primary qualities lend themselves readily to mathematical or geometric description. ...but it seems that secondary qualities are less amenable to being represented mathematically.
     From: Cardinal/Hayward/Jones (Epistemology [2004], Ch.4)
     A reaction: As a believer in the primary/secondary distinction, I welcome this point. This is either evidence for the external reality of primary qualities, or an interesting observation about maths. Do we make the primary/secondary distinction because we do maths?
An object cannot remain an object without its primary qualities [Cardinal/Hayward/Jones]
     Full Idea: An object cannot lack shape, size, position or motion and remain an object.
     From: Cardinal/Hayward/Jones (Epistemology [2004], Ch.4)
     A reaction: This points towards the essentialist view (see Idea 5453). This does raise the question of whether an object could lose its colour with impugnity, or the quality of sound that it makes when struck.
13. Knowledge Criteria / B. Internal Justification / 5. Coherentism / c. Coherentism critique
My justifications might be very coherent, but totally unconnected to the world [Cardinal/Hayward/Jones]
     Full Idea: My beliefs could be well justified in coherentist terms, while not accurately representing the world, and my system of beliefs could be completely free-floating.
     From: Cardinal/Hayward/Jones (Epistemology [2004], Ch.3)
     A reaction: This nicely encapsulates to correspondence objection to coherence theory. One thing missing from the coherence account is that beliefs aren't chosen for their coherence, but are mostly unthinkingly triggered by experiences.
27. Natural Reality / A. Classical Physics / 1. Mechanics / c. Forces
The strong force has a considerably greater range than the weak force [Martin,BR]
     Full Idea: The strong nuclear force has a range of 10^-15 m, considerably larger than the range of the weak force.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is because the bosons transmitting the weak force (W+, W-, W°) are much heavier than the gluons of the strong force.
27. Natural Reality / A. Classical Physics / 2. Thermodynamics / c. Conservation of energy
If an expected reaction does not occur, that implies a conservation law [Martin,BR]
     Full Idea: If some reaction is not observed when there is apparently nothing to prevent it occurring, it is an indication that a conservation law is in operation.
     From: Brian R. Martin (Particle Physics [2011], 07)
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / a. Electrodynamics
Electron emit and reabsorb photons, which create and reabsorb virtual electrons and positrons [Martin,BR]
     Full Idea: In QED an electron constantly emits and reabsorbs virtual photons and these photons constantly create and reabsorb pairs of virtual electrons and positrons, and so on.
     From: Brian R. Martin (Particle Physics [2011], 06)
     A reaction: 'And so on'! These virtual particles have energy, and hence mass.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / b. Fields
A 'field' is just a region to which points can be assigned in space and time [Martin,BR]
     Full Idea: The word 'field' is simply a shorthand way of saying that a physical property is assigned to the points of space and time in a region.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is disappointing because I had begun to think that fields were foundational for modern ontology. Turns out they are operational abstractions (according to Martin). Note that a field extends over time.
The Higgs field, unlike others, has a nozero value in a state without particles [Martin,BR]
     Full Idea: The Higgs field has the property of having a nonzero value in a state without particles, the vacuum state. Other fields are assumed to have a value zero in a vacuum state.
     From: Brian R. Martin (Particle Physics [2011], 09)
     A reaction: This seems to make a big difference to our concept of a field, since it has a measurable reality even when there are no particles. So it isn't just a geometrical frame for locating particles.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / c. Electrons
Many physicists believe particles have further structure, if only we could see it [Martin,BR]
     Full Idea: Although standard particles are assumed to be structureless, many physicists believe that if distances could be probed down to 10^-35 m structures would be discovered.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: Such probing is said to be probably impossible. And does the division then come to a halt? Aristotle's meditations on this are not irrelevant.
27. Natural Reality / B. Modern Physics / 2. Electrodynamics / d. Quantum mechanics
Uncertainty allows very brief violations of energy conservation - even shorter with higher energies [Martin,BR]
     Full Idea: The uncertainty principle states that energy conservation can be violated, but only for a limited period of time. As the energy violation increases, the time period within which 'borrowed' energy has to be 'paid back' decreases.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: This is the only reason modern physicists ever seem to mention the uncertainty principle. You can ask why this debt must be paid, but it seems to be hidden where the laws of physics may not even apply.
The Exclusion Principle says no two fermions occupy the same state, with the same numbers [Martin,BR]
     Full Idea: The 'exclusion principle' initially stated that no two electrons in a system could simultaneously occupy the same quantum state and thus have the same set of quantum numbers. The principle actually applies to all fermions, but not to bosons.
     From: Brian R. Martin (Particle Physics [2011], 02)
     A reaction: This principle is said to be at the root of atomic structure, making each element unique. What exactly is a 'system'? Why does this principle hold? How do you ensure two women don't wear the same dress at a party?
27. Natural Reality / B. Modern Physics / 4. Standard Model / b. Standard model
The standard model combines theories of strong interaction, and electromagnetic and weak interaction [Martin,BR]
     Full Idea: As presently formulated, the standard model is two theories. One operates in the sector of strong interaction, and the other in the sector of the electromagnetic and weak interactions.
     From: Brian R. Martin (Particle Physics [2011], 01)
     A reaction: The first is Quantum Chomodynamics (QCD). The second is Quantum Electrodynamics (QED). Interesting that the weak interaction is included in the latter, which (I take it) means there is an electro-weak union. Interactions are the heart of the model.
27. Natural Reality / B. Modern Physics / 4. Standard Model / c. Particle properties
Eletrons don't literally 'spin', because they are point-like [Martin,BR]
     Full Idea: The picture of a particle spinning like a top is sometime useful, but it is not consistent with the idea of the electron being point-like. In fact there is no analogy for spin in non-quantum physics.
     From: Brian R. Martin (Particle Physics [2011], 02)
     A reaction: If we take this stuff literally then it blow traditional metaphysics to bits, because an electron has properties without being a substance. In what sense can an electron 'have' properties if it is a point? In interactions they cease to be points. Eh?
Virtual particles surround any charged particle [Martin,BR]
     Full Idea: A cloud of virtual particles always surrounds a charged particle.
     From: Brian R. Martin (Particle Physics [2011], 06)
     A reaction: Here's a nice fact for aspiring Buddhists to meditate on.
The properties of a particle are determined by its quantum numbers and its mass [Martin,BR]
     Full Idea: In quantum theory, the full set of quantum numbers defines the state of the particle and, along with its mass, determines its properties.
     From: Brian R. Martin (Particle Physics [2011], 02)
27. Natural Reality / B. Modern Physics / 5. Unified Models / b. String theory
String theory only has one free parameter (tension) - unlike the standard model with 19 [Martin,BR]
     Full Idea: Unlike the standard model, with its 19 free parameters (including the masses of quarks, coupling constants and mixing angles), string theories have a single free paramater: the string tension.
     From: Brian R. Martin (Particle Physics [2011], 10)
     A reaction: This must be one feature in favour of string theory, despite its problems.
27. Natural Reality / F. Chemistry / 2. Modern Elements
An 'element' is what cannot be decomposed by chemistry [Martin,BR]
     Full Idea: In the modern sense 'element' means a substance that cannot be decomposed by the methods of chemistry.
     From: Brian R. Martin (Particle Physics [2011], 01)