Combining Philosophers

All the ideas for Charles Parsons, Ion and Rod Girle

unexpand these ideas     |    start again     |     specify just one area for these philosophers


24 ideas

4. Formal Logic / B. Propositional Logic PL / 1. Propositional Logic
Propositional logic handles negation, disjunction, conjunction; predicate logic adds quantifiers, predicates, relations [Girle]
     Full Idea: Propositional logic can deal with negation, disjunction and conjunction of propositions, but predicate logic goes beyond it to deal with quantifiers, predicates and relations.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This is on the first page of an introduction to the next stage, which is to include modal notions like 'must' and 'possibly'.
There are three axiom schemas for propositional logic [Girle]
     Full Idea: The axioms of propositional logic are: A→(B→A); A→(B→C)→(A→B)→(A→C) ; and (¬A→¬B)→(B→A).
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / a. Symbols of PL
Proposition logic has definitions for its three operators: or, and, and identical [Girle]
     Full Idea: The operators of propositional logic are defined as follows: 'or' (v) is not-A implies B; 'and' (ampersand) is not A-implies-not-B; and 'identity' (three line equals) is A-implies-B and B-implies-A.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / B. Propositional Logic PL / 2. Tools of Propositional Logic / e. Axioms of PL
Axiom systems of logic contain axioms, inference rules, and definitions of proof and theorems [Girle]
     Full Idea: An axiom system for a logic contains three elements: a set of axioms; a set of inference rules; and definitions for proofs and theorems. There are also definitions for the derivation of conclusions from sets of premises.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / g. System S4
There are seven modalities in S4, each with its negation [Girle]
     Full Idea: In S4 there are fourteen modalities: no-operator; necessarily; possibly; necessarily-possibly; possibly-necessarily; necessarily-possibly-necessarily; and possibly-necessarily-possibly (each with its negation).
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: This is said to be 'more complex' than S5, but also 'weaker'.
4. Formal Logic / D. Modal Logic ML / 3. Modal Logic Systems / h. System S5
◊p → □◊p is the hallmark of S5 [Girle]
     Full Idea: The critical formula that distinguishes S5 from all others is: ◊p → □◊p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.3)
     A reaction: If it is possible that it is raining, then it is necessary that it is possible that it is raining. But if it is possible in this world, how can that possibility be necessary in all possible worlds?
S5 has just six modalities, and all strings can be reduced to those [Girle]
     Full Idea: In S5 there are six modalities: no-operator; necessarily; and possibly (and their negations). In any sequence of operators we may delete all but the last to gain an equivalent formula.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.5)
     A reaction: Such drastic simplification seems attractive. Is there really no difference, though, between 'necessarily-possibly', 'possibly-possibly' and just 'possibly'? Could p be contingently possible in this world, and necessarily possible in another?
4. Formal Logic / D. Modal Logic ML / 4. Alethic Modal Logic
Modal logic is not an extensional language [Parsons,C]
     Full Idea: Modal logic is not an extensional language.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.159 n8)
     A reaction: [I record this for investigation. Possible worlds seem to contain objects]
Possible worlds logics use true-in-a-world rather than true [Girle]
     Full Idea: In possible worlds logics a statement is true-in-a-world rather than just true.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.1)
     A reaction: This sounds relativist, but I don't think it is. It is the facts which change, not the concept of truth. So 'donkeys can talk' may be true in a world, but not in the actual one.
Modal logic has four basic modal negation equivalences [Girle]
     Full Idea: The four important logical equivalences in modal logic (the Modal Negation equivalences) are: ¬◊p↔□¬p, ◊¬p↔¬□p, □p↔¬◊¬p, and ◊p↔¬□¬p.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: [Possibly is written as a diamond, necessarily a square] These are parallel to a set of equivalences between quantifiers in predicate logic. They are called the four 'modal negation (MN) equivalences'.
Modal logics were studied in terms of axioms, but now possible worlds semantics is added [Girle]
     Full Idea: Modal logics were, for a long time, studied in terms of axiom systems. The advent of possible worlds semantics made it possible to study them in a semantic way as well.
     From: Rod Girle (Modal Logics and Philosophy [2000], 6.5)
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / j. Axiom of Choice IX
The old problems with the axiom of choice are probably better ascribed to the law of excluded middle [Parsons,C]
     Full Idea: The difficulties historically attributed to the axiom of choice are probably better ascribed to the law of excluded middle.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §2)
     A reaction: The law of excluded middle was a target for the intuitionists, so presumably the debate went off in that direction.
5. Theory of Logic / B. Logical Consequence / 7. Strict Implication
Necessary implication is called 'strict implication'; if successful, it is called 'entailment' [Girle]
     Full Idea: Necessary implication is often called 'strict implication'. The sort of strict implication found in valid arguments, where the conjunction of the premises necessarily implies the conclusion, is often called 'entailment'.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.2)
     A reaction: These are basic concept for all logic.
5. Theory of Logic / G. Quantification / 4. Substitutional Quantification
Substitutional existential quantifier may explain the existence of linguistic entities [Parsons,C]
     Full Idea: I argue (against Quine) that the existential quantifier substitutionally interpreted has a genuine claim to express a concept of existence, which may give the best account of linguistic abstract entities such as propositions, attributes, and classes.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.156)
     A reaction: Intuitively I have my doubts about this, since the whole thing sounds like a verbal and conventional game, rather than anything with a proper ontology. Ruth Marcus and Quine disagree over this one.
On the substitutional interpretation, '(∃x) Fx' is true iff a closed term 't' makes Ft true [Parsons,C]
     Full Idea: For the substitutional interpretation of quantifiers, a sentence of the form '(∃x) Fx' is true iff there is some closed term 't' of the language such that 'Ft' is true. For the objectual interpretation some object x must exist such that Fx is true.
     From: Charles Parsons (A Plea for Substitutional Quantification [1971], p.156)
     A reaction: How could you decide if it was true for 't' if you didn't know what object 't' referred to?
5. Theory of Logic / H. Proof Systems / 5. Tableau Proof
If an argument is invalid, a truth tree will indicate a counter-example [Girle]
     Full Idea: The truth trees method for establishing the validity of arguments and formulas is easy to use, and has the advantage that if an argument or formula is not valid, then a counter-example can be retrieved from the tree.
     From: Rod Girle (Modal Logics and Philosophy [2000], 1.4)
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / c. Counting procedure
Parsons says counting is tagging as first, second, third..., and converting the last to a cardinal [Parsons,C, by Heck]
     Full Idea: In Parsons's demonstrative model of counting, '1' means the first, and counting says 'the first, the second, the third', where one is supposed to 'tag' each object exactly once, and report how many by converting the last ordinal into a cardinal.
     From: report of Charles Parsons (Frege's Theory of Numbers [1965]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 3
     A reaction: This sounds good. Counting seems to rely on that fact that numbers can be both ordinals and cardinals. You don't 'convert' at the end, though, because all the way you mean 'this cardinality in this order'.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
General principles can be obvious in mathematics, but bold speculations in empirical science [Parsons,C]
     Full Idea: The existence of very general principles in mathematics are universally regarded as obvious, where on an empiricist view one would expect them to be bold hypotheses, about which a prudent scientist would maintain reserve.
     From: Charles Parsons (Mathematical Intuition [1980], p.152), quoted by Penelope Maddy - Naturalism in Mathematics
     A reaction: This is mainly aimed at Quine's and Putnam's indispensability (to science) argument about mathematics.
6. Mathematics / C. Sources of Mathematics / 8. Finitism
If functions are transfinite objects, finitists can have no conception of them [Parsons,C]
     Full Idea: The finitist may have no conception of function, because functions are transfinite objects.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §4)
     A reaction: He is offering a view of Tait's. Above my pay scale, but it sounds like a powerful objection to the finitist view. Maybe there is a finitist account of functions that could be given?
7. Existence / D. Theories of Reality / 11. Ontological Commitment / e. Ontological commitment problems
If a mathematical structure is rejected from a physical theory, it retains its mathematical status [Parsons,C]
     Full Idea: If experience shows that some aspect of the physical world fails to instantiate a certain mathematical structure, one will modify the theory by sustituting a different structure, while the original structure doesn't lose its status as part of mathematics.
     From: Charles Parsons (Review of Tait 'Provenance of Pure Reason' [2009], §2)
     A reaction: This seems to be a beautifully simple and powerful objection to the Quinean idea that mathematics somehow only gets its authority from physics. It looked like a daft view to begin with, of course.
10. Modality / A. Necessity / 3. Types of Necessity
Analytic truths are divided into logically and conceptually necessary [Girle]
     Full Idea: It has been customary to see analytic truths as dividing into the logically necessary and the conceptually necessary.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: I suspect that this neglected distinction is important in discussions of Quine's elimination of the analytic/synthetic distinction. Was Quine too influenced by what is logically necessary, which might shift with a change of axioms?
10. Modality / B. Possibility / 1. Possibility
Possibilities can be logical, theoretical, physical, economic or human [Girle]
     Full Idea: Qualified modalities seem to form a hierarchy, if we say that 'the possibility that there might be no hunger' is possible logically, theoretically, physically, economically, and humanly.
     From: Rod Girle (Modal Logics and Philosophy [2000], 7.3)
     A reaction: Girle also mentions conceptual possibility. I take 'physically' to be the same as 'naturally'. I would take 'metaphysically' possible to equate to 'theoretically' rather than 'logically'. Almost anything might be logically possible, with bizarre logic.
10. Modality / E. Possible worlds / 1. Possible Worlds / a. Possible worlds
A world has 'access' to a world it generates, which is important in possible worlds semantics [Girle]
     Full Idea: When one world generates another then it has 'access' to the world it generated. The accessibility relation between worlds is very important in possible worlds semantics.
     From: Rod Girle (Modal Logics and Philosophy [2000], 3.2)
     A reaction: This invites the obvious question what is meant by 'generates'.
23. Ethics / C. Virtue Theory / 1. Virtue Theory / a. Nature of virtue
A virtue is a combination of intelligence, strength and luck [Ion]
     Full Idea: The virtue of each thing is a Triad: intelligence, strength, luck.
     From: Ion (fragments/reports [c.435 BCE], B1), quoted by (who?) - where?