Combining Philosophers

All the ideas for Crispin Wright, H.Putnam/P.Oppenheim and Philip Kitcher

unexpand these ideas     |    start again     |     specify just one area for these philosophers


75 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
     Full Idea: We can learn from the work of philosophers of other periods only if we are prepared to run the risk of radical and almost inevitable misrepresentation of his thought.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Pref)
     A reaction: This sounds about right, and a motto for my own approach to Aristotle and Leibniz, but I see the effort as more collaborative than this suggests. Professional specialists in older philosophers are a vital part of the team. Read them!
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
     Full Idea: The most productive way in which to attempt an understanding of any philosophical idea is to work on its defence.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: Very nice. The key point is that this brings greater understanding than working on attacking an idea, which presumably has the dangers of caricature, straw men etc. It is the Socratic insight that dialectic is the route to wisdom.
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
     Full Idea: Frege gave up on the attempt to introduce natural numbers by contextual definition, but the project has been revived by neo-logicists.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction II
4. Formal Logic / E. Nonclassical Logics / 2. Intuitionist Logic
Intuitionists rely on assertability instead of truth, but assertability relies on truth [Kitcher]
     Full Idea: Though it may appear that the intuitionist is providing an account of the connectives couched in terms of assertability conditions, the notion of assertability is a derivative one, ultimately cashed out by appealing to the concept of truth.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: I have quite a strong conviction that Kitcher is right. All attempts to eliminate truth, as some sort of ideal at the heart of ordinary talk and of reasoning, seems to me to be doomed.
5. Theory of Logic / A. Overview of Logic / 6. Classical Logic
Classical logic is our preconditions for assessing empirical evidence [Kitcher]
     Full Idea: In my terminology, classical logic (or at least, its most central tenets) consists of propositional preconditions for our assessing empirical evidence in the way we do.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: I like an even stronger version of this - that classical logic arises out of our experiences of things, and so we are just assessing empirical evidence in terms of other (generalised) empirical evidence. Logic results from induction. Very unfashionable.
I believe classical logic because I was taught it and use it, but it could be undermined [Kitcher]
     Full Idea: I believe the laws of classical logic, in part because I was taught them, and in part because I think I see how those laws are used in assessing evidence. But my belief could easily be undermined by experience.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §VII)
     A reaction: Quine has one genuine follower! The trouble is his first sentence would fit witch-doctoring just as well. Kitcher went to Cambridge; I hope he doesn't just believe things because he was taught them, or because he 'sees how they are used'!
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
     Full Idea: For Wright, an expression refers to an object if it fulfils the 'syntactic role' of a singular term, and if we have fixed the truth-conditions of sentences containing it in such a way that some of them come out true.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.15
     A reaction: Much waffle is written about reference, and it is nice to hear of someone actually trying to state the necessary and sufficient conditions for reference to be successful. So is it possible for 'the round square' to ever refer? '...is impossible to draw'
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Kitcher says maths is an idealisation of the world, and our operations in dealing with it [Kitcher, by Resnik]
     Full Idea: Kitcher says maths is an 'idealising theory', like some in physics; maths idealises features of the world, and practical operations, such as segregating and matching (numbering), measuring, cutting, moving, assembling (geometry), and collecting (sets).
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984]) by Michael D. Resnik - Maths as a Science of Patterns One.4.2.2
     A reaction: This seems to be an interesting line, which is trying to be fairly empirical, and avoid basing mathematics on purely a priori understanding. Nevertheless, we do not learn idealisation from experience. Resnik labels Kitcher an anti-realist.
Mathematical a priorism is conceptualist, constructivist or realist [Kitcher]
     Full Idea: Proposals for a priori mathematical knowledge have three main types: conceptualist (true in virtue of concepts), constructivist (a construct of the human mind) and realist (in virtue of mathematical facts).
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.3)
     A reaction: Realism is pure platonism. I think I currently vote for conceptualism, with the concepts deriving from the concrete world, and then being extended by fictional additions, and shifts in the notion of what 'number' means.
The interest or beauty of mathematics is when it uses current knowledge to advance undestanding [Kitcher]
     Full Idea: What makes a question interesting or gives it aesthetic appeal is its focussing of the project of advancing mathematical understanding, in light of the concepts and systems of beliefs already achieved.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.3)
     A reaction: Kitcher defends explanation (the source of understanding, presumably) in terms of unification with previous theories (the 'concepts and systems'). I always have the impression that mathematicians speak of 'beauty' when they see economy of means.
The 'beauty' or 'interest' of mathematics is just explanatory power [Kitcher]
     Full Idea: Insofar as we can honor claims about the aesthetic qualities or the interest of mathematical inquiries, we should do so by pointing to their explanatory power.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 09.4)
     A reaction: I think this is a good enough account for me (but probably not for my friend Carl!). Beautiful cars are particularly streamlined. Beautiful people look particularly healthy. A beautiful idea is usually wide-ranging.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
     Full Idea: In the Fregean view number theory is a science, aimed at those truths furnished by the essential properties of zero and its successors. The two broad question are then the nature of the objects, and the epistemology of those facts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [compressed] I pounce on the word 'essence' here (my thing). My first question is about the extent to which the natural numbers all have one generic essence, and the extent to which they are individuals (bless their little cotton socks).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
     Full Idea: Someone could be clear about number identities, and distinguish numbers from other things, without conceiving them as ordered in a progression at all. The point of them would be to make comparisons between sizes of groups.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: Hm. Could you grasp size if you couldn't grasp which of two groups was the bigger? What's the point of noting that I have ten pounds and you only have five, if you don't realise that I have more than you? You could have called them Caesar and Brutus.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers stand to measurement as natural numbers stand to counting [Kitcher]
     Full Idea: The real numbers stand to measurement as the natural numbers stand to counting.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.4)
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / j. Complex numbers
Complex numbers were only accepted when a geometrical model for them was found [Kitcher]
     Full Idea: An important episode in the acceptance of complex numbers was the development by Wessel, Argand, and Gauss, of a geometrical model of the numbers.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: The model was in terms of vectors and rotation. New types of number are spurned until they can be shown to integrate into a range of mathematical practice, at which point mathematicians change the meaning of 'number' (without consulting us).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / a. Units
A one-operation is the segregation of a single object [Kitcher]
     Full Idea: We perform a one-operation when we perform a segregative operation in which a single object is segregated.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.3)
     A reaction: This is part of Kitcher's empirical but constructive account of arithmetic, which I find very congenial. He avoids the word 'unit', and goes straight to the concept of 'one' (which he treats as more primitive than zero).
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
     Full Idea: The invitation to number the instances of some non-sortal concept is intelligible only if it is relativised to a sortal.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: I take this to be an essentially Fregean idea, as when we count the boots when we have decided whether they fall under the concept 'boot' or the concept 'pair'. I also take this to be the traditional question 'what units are you using'?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
The old view is that mathematics is useful in the world because it describes the world [Kitcher]
     Full Idea: There is an old explanation of the utility of mathematics. Mathematics describes the structural features of our world, features which are manifested in the behaviour of all the world's inhabitants.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: He only cites Russell in modern times as sympathising with this view, but Kitcher gives it some backing. I think the view is totally correct. The digression produced by Cantorian infinities has misled us.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
With infinitesimals, you divide by the time, then set the time to zero [Kitcher]
     Full Idea: The method of infinitesimals is that you divide by the time, and then set the time to zero.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 10.2)
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
     Full Idea: Wright is claiming that HP is a special sort of truth in some way: it is supposed to be the fundamental truth about cardinality; ...in particular, HP is supposed to be more fundamental, in some sense than the Dedekind-Peano axioms.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Heck notes that although PA can be proved from HP, HP can be proven from PA plus definitions, so direction of proof won't show fundamentality. He adds that Wright thinks HP is 'more illuminating'.
There are five Peano axioms, which can be expressed informally [Wright,C]
     Full Idea: Informally, Peano's axioms are: 0 is a number, numbers have a successor, different numbers have different successors, 0 isn't a successor, properties of 0 which carry over to successors are properties of all numbers.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: Each statement of the famous axioms is slightly different from the others, and I have reworded Wright to fit him in. Since the last one (the 'induction axiom') is about properties, it invites formalization in second-order logic.
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
     Full Idea: The intuitive proposal is the essential number theoretic truths are precisely the logical consequences of the Peano axioms, ...but the notion of consequence is a semantic one...and it is not obvious that we possess a semantic notion of the requisite kind.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: (Not sure I understand this, but it is his starting point for rejecting PA as the essence of arithmetic).
What facts underpin the truths of the Peano axioms? [Wright,C]
     Full Idea: We incline to think of the Peano axioms as truths of some sort; so there has to be a philosophical question how we ought to conceive of the nature of the facts which make those statements true.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [He also asks about how we know the truths]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
     Full Idea: We teach our children to count, sometimes with no attempt to explain what the sounds mean. Doubtless it is this habit which makes it so natural to think of the number series as fundamental. Frege's insight is that sameness of number is fundamental.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: 'When do children understand number?' rather than when they can recite numerals. I can't make sense of someone being supposed to understand number without a grasp of which numbers are bigger or smaller. To make 13='15' do I add or subtract?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
     Full Idea: Wright says the Fregean arithmetic can be broken down into two steps: first, Hume's Law may be derived from Law V; and then, arithmetic may be derived from Hume's Law without any help from Law V.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction I.4
     A reaction: This sounds odd if Law V is false, but presumably Hume's Law ends up as free-standing. It seems doubtful whether the resulting theory would count as logic.
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
     Full Idea: Wright proposed removing Frege's basic law V (which led to paradox), replacing it with Frege's 'number principle' (identity of numbers is one-to-one correspondence). The new system is formally consistent, and the Peano axioms can be derived from it.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: The 'number principle' is also called 'Hume's principle'. This idea of Wright's resurrected the project of logicism. The jury is ought again... Frege himself questioned whether the number principle was a part of logic, which would be bad for 'logicism'.
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
     Full Idea: Wright intends the claim that Hume's Principle (HP) embodies an explanation of the concept of number to imply that it is analytic of the concept of cardinal number - so it is an analytic or conceptual truth, much as a definition would be.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Boolos is quoted as disagreeing. Wright is claiming a fundamental truth. Boolos says something can fix the character of something (as yellow fixes bananas), but that doesn't make it 'fundamental'. I want to defend 'fundamental'.
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
     Full Idea: What is fundamental to possession of any notion of natural number at all is not the knowledge that the numbers may be arrayed in a progression but the knowledge that they are identified and distinguished by reference to 1-1 correlation among concepts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: My question is 'what is the essence of number?', and my inclination to disagree with Wright on this point suggests that the essence of number is indeed caught in the Dedekind-Peano axioms. But what of infinite numbers?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
     Full Idea: Identifying numbers with extensions will not solve the Caesar problem for numbers unless we have already solved the Caesar problem for extensions.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
     Full Idea: Number-theoretic platonism is just the thesis that natural number is a sortal concept.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: See Crispin Wright on sortals to expound this. An odd way to express platonism, but he is presenting the Fregean version of it.
6. Mathematics / C. Sources of Mathematics / 2. Intuition of Mathematics
Intuition is no basis for securing a priori knowledge, because it is fallible [Kitcher]
     Full Idea: The process of pure intuition does not measure up to the standards required of a priori warrants not because it is sensuous but because it is fallible.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.2)
If mathematics comes through intuition, that is either inexplicable, or too subjective [Kitcher]
     Full Idea: If mathematical statements are don't merely report features of transient and private mental entities, it is unclear how pure intuition generates mathematical knowledge. But if they are, they express different propositions for different people and times.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.1)
     A reaction: This seems to be the key dilemma which makes Kitcher reject intuition as an a priori route to mathematics. We do, though, just seem to 'see' truths sometimes, and are unable to explain how we do it.
Mathematical intuition is not the type platonism needs [Kitcher]
     Full Idea: The intuitions of which mathematicians speak are not those which Platonism requires.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 03.3)
     A reaction: The point is that it is not taken to be a 'special' ability, but rather a general insight arising from knowledge of mathematics. I take that to be a good account of intuition, which I define as 'inarticulate rationality'.
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
Mathematical knowledge arises from basic perception [Kitcher]
     Full Idea: Mathematical knowledge arises from rudimentary knowledge acquired by perception.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: This is an empiricist manifesto, which asserts his allegiance to Mill, and he gives a sophisticated account of how higher mathematics can be accounted for in this way. Well, he tries to.
My constructivism is mathematics as an idealization of collecting and ordering objects [Kitcher]
     Full Idea: The constructivist position I defend claims that mathematics is an idealized science of operations which can be performed on objects in our environment. It offers an idealized description of operations of collecting and ordering.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], Intro)
     A reaction: I think this is right. What is missing from Kitcher's account (and every other account I've met) is what is meant by 'idealization'. How do you go about idealising something? Hence my interest in the psychology of abstraction.
We derive limited mathematics from ordinary things, and erect powerful theories on their basis [Kitcher]
     Full Idea: I propose that a very limited amount of our mathematical knowledge can be obtained by observations and manipulations of ordinary things. Upon this small base we erect the powerful general theories of modern mathematics.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 05.2)
     A reaction: I agree. The three related processes that take us from the experiential base of mathematics to its lofty heights are generalisation, idealisation and abstraction.
The defenders of complex numbers had to show that they could be expressed in physical terms [Kitcher]
     Full Idea: Proponents of complex numbers had ultimately to argue that the new operations shared with the original paradigms a susceptibility to construal in physical terms. The geometrical models of complex numbers answered to this need.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 07.5)
     A reaction: [A nice example of the verbose ideas which this website aims to express in plain English!] The interest is not that they had to be described physically (which may pander to an uninformed audience), but that they could be so described.
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
     Full Idea: We may not be able to settle whether some general form of empiricism is correct independently of natural numbers. It might be precisely our grasp of the abstract sortal, natural number, which shows the hypothesis of empiricism to be wrong.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: A nice turning of the tables. In the end only coherence decides these things. You may accept numbers and reject empiricism, and then find you have opened the floodgates for abstracta. Excessive floodgates, or blockages of healthy streams?
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
     Full Idea: Treating numbers adjectivally is, in effect, treating the numbers as quantifiers. Frege observes that we can always parse out any apparently adjectival use of a number word in terms of substantival use.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: The immediate response to this is that any substantival use can equally be expressed adjectivally. If you say 'the number of moons of Jupiter is four', I can reply 'oh, you mean Jupiter has four moons'.
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
     Full Idea: The Peano Axioms are logical consequences of a statement constituting the core of an explanation of the notion of cardinal number. The infinity of cardinal numbers emerges as a consequence of the way cardinal number is explained.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xix)
     A reaction: This, along with Idea 13896, nicely summarises the neo-logicist project. I tend to favour a strategy which starts from ordering, rather than identities (1-1), but an attraction is that this approach is closer to counting objects in its basics.
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
     Full Idea: We shall endeavour to see whether it is possible to follow through the strategy adumbrated in 'Grundlagen' for establishing the Peano Axioms without at any stage invoking classes.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: The key idea of neo-logicism. If you can avoid classes entirely, then set theory paradoxes become irrelevant, and classes aren't logic. Philosophers now try to derive the Peano Axioms from all sorts of things. Wright admits infinity is a problem.
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
     Full Idea: Crispin Wright has reactivated Frege's logistic program, which for decades just about everybody assumed was a lost cause.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by José A. Benardete - Logic and Ontology 3
     A reaction: [This opens Bernadete's section called "Back to Strong Logicism?"]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Analyticity avoids abstract entities, but can there be truth without reference? [Kitcher]
     Full Idea: Philosophers who hope to avoid commitment to abstract entities by claiming that mathematical statements are analytic must show how analyticity is, or provides a species of, truth not requiring reference.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.I)
     A reaction: [the last part is a quotation from W.D. Hart] Kitcher notes that Frege has a better account, because he provides objects to which reference can be made. I like this idea, which seems to raise a very large question, connected to truthmakers.
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
     Full Idea: Most would cite Russell's paradox, the non-logical character of the axioms which Russell and Whitehead's reconstruction of Frege's enterprise was constrained to employ, and the incompleteness theorems of Gödel, as decisive for logicism's failure.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
     Full Idea: The general view is that Russell's Paradox put paid to Frege's logicist attempt, and Russell's own attempt is vitiated by the non-logical character of his axioms (esp. Infinity), and by the incompleteness theorems of Gödel. But these are bad reasons.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: Wright's work is the famous modern attempt to reestablish logicism, in the face of these objections.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
Arithmetic is an idealizing theory [Kitcher]
     Full Idea: I construe arithmetic as an idealizing theory.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: I find 'generalising' the most helpful word, because everyone seems to understand and accept the idea. 'Idealisation' invokes 'ideals', which lots of people dislike, and lots of philosophers seem to have trouble with 'abstraction'.
Arithmetic is made true by the world, but is also made true by our constructions [Kitcher]
     Full Idea: I want to suggest both that arithmetic owes its truth to the structure of the world and that arithmetic is true in virtue of our constructive activity.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: Well said, but the problem seems no more mysterious to me than the fact that trees grow in the woods and we build houses out of them. I think I will declare myself to be an 'empirical constructivist' about mathematics.
We develop a language for correlations, and use it to perform higher level operations [Kitcher]
     Full Idea: The development of a language for describing our correlational activity itself enables us to perform higher level operations.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.2)
     A reaction: This is because all language itself (apart from proper names) is inherently general, idealised and abstracted. He sees the correlations as the nested collections expressed by set theory.
Constructivism is ontological (that it is the work of an agent) and epistemological (knowable a priori) [Kitcher]
     Full Idea: The constructivist ontological thesis is that mathematics owes its truth to the activity of an actual or ideal subject. The epistemological thesis is that we can have a priori knowledge of this activity, and so recognise its limits.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: The mention of an 'ideal' is Kitcher's personal view. Kitcher embraces the first view, and rejects the second.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / c. Conceptualism
Conceptualists say we know mathematics a priori by possessing mathematical concepts [Kitcher]
     Full Idea: Conceptualists claim that we have basic a priori knowledge of mathematical axioms in virtue of our possession of mathematical concepts.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.1)
     A reaction: I sympathise with this view. If concepts are reasonably clear, they will relate to one another in certain ways. How could they not? And how else would you work out those relations other than by thinking about them?
If meaning makes mathematics true, you still need to say what the meanings refer to [Kitcher]
     Full Idea: Someone who believes that basic truths of mathematics are true in virtue of meaning is not absolved from the task of saying what the referents of mathematical terms are, or ...what mathematical reality is like.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 04.6)
     A reaction: Nice question! He's a fan of getting at the explanatory in mathematics.
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
     Full Idea: I have the gravest doubts whether any coherent account could be given of any multiplicity of senses of 'exist'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.x)
     A reaction: I thoroughly agree with this thought. Do water and wind exist in different senses of 'exist'?
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
     Full Idea: When a class of terms functions as singular terms, and the sentences are true, then those terms genuinely refer. Being singular terms, their reference is to objects. There is no further question whether they really refer, and there are such objects.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: This seems to be a key sentence, because this whole view is standardly called 'platonic', but it certainly isn't platonism as we know it, Jim. Ontology has become an entirely linguistic matter, but do we then have 'sakes' and 'whereaboutses'?
9. Objects / A. Existence of Objects / 2. Abstract Objects / b. Need for abstracta
Abstract objects were a bad way of explaining the structure in mathematics [Kitcher]
     Full Idea: The original introduction of abstract objects was a bad way of doing justice to the insight that mathematics is concerned with structure.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.1)
     A reaction: I'm a fan of explanations in metaphysics, and hence find the concept of 'bad' explanations in metaphysics particularly intriguing.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
     Full Idea: Wright says we should accord to contextually defined abstract terms a genuine full-blown reference to objects.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.18
     A reaction: This is the punch line of Wright's neo-logicist programme. See Idea 9868 for his view of reference. Dummett regards this strong view of contextual definition as 'exorbitant'. Wright's view strikes me as blatantly false.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
     Full Idea: The claim that no concept counts as sortal if an instance of it can survive its loss, runs foul of so-called phase sortals like 'embryo' and 'chrysalis'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: The point being that those items only fall under that sortal for one phase of their career, and of their identity. I've always thought such claims absurd, and this gives a good reason for my view.
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
     Full Idea: Wright espouses a non-realist, indeed non-cognitive account of logical necessity. Crucial to this is the idea that acceptance of a statement as necessary always involves an element of decision (to use it in a necessary way).
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Ian McFetridge - Logical Necessity: Some Issues §3
     A reaction: This has little appeal to me, as I take (unfashionably) the view that that logical necessity is rooted in the behaviour of the actual physical world, with which you can't argue. We test simple logic by making up examples.
10. Modality / D. Knowledge of Modality / 1. A Priori Necessary
Many necessities are inexpressible, and unknowable a priori [Kitcher]
     Full Idea: There are plenty of necessary truths that we are unable to express, let alone know a priori.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: This certainly seems to put paid to any simplistic idea that the a priori and the necessary are totally coextensive. We might, I suppose, claim that all necessities are a priori for the Archangel Gabriel (or even a very bright cherub). Cf. Idea 12429.
10. Modality / D. Knowledge of Modality / 2. A Priori Contingent
Knowing our own existence is a priori, but not necessary [Kitcher]
     Full Idea: What is known a priori may not be necessary, if we know a priori that we ourselves exist and are actual.
     From: Philip Kitcher (A Priori Knowledge Revisited [2000], §II)
     A reaction: Compare Idea 12428, which challenges the inverse of this relationship. This one looks equally convincing, and Kripke adds other examples of contingent a priori truths, such as those referring to the metre rule in Paris.
12. Knowledge Sources / A. A Priori Knowledge / 1. Nature of the A Priori
A priori knowledge comes from available a priori warrants that produce truth [Kitcher]
     Full Idea: X knows a priori that p iff the belief was produced with an a priori warrant, which is a process which is available to X, and this process is a warrant, and it makes p true.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.4)
     A reaction: [compression of a formal spelling-out] This is a modified version of Goldman's reliabilism, for a priori knowledge. It sounds a bit circular and uninformative, but it's a start.
12. Knowledge Sources / A. A Priori Knowledge / 6. A Priori from Reason
In long mathematical proofs we can't remember the original a priori basis [Kitcher]
     Full Idea: When we follow long mathematical proofs we lose our a priori warrants for their beginnings.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 02.2)
     A reaction: Kitcher says Descartes complains about this problem several times in his 'Regulae'. The problem runs even deeper into all reasoning, if you become sceptical about memory. You have to remember step 1 when you do step 2.
12. Knowledge Sources / A. A Priori Knowledge / 9. A Priori from Concepts
Knowledge is a priori if the experience giving you the concepts thus gives you the knowledge [Kitcher]
     Full Idea: Knowledge is independent of experience if any experience which would enable us to acquire the concepts involved would enable us to have the knowledge.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.3)
     A reaction: This is the 'conceptualist' view of a priori knowledge, which Kitcher goes on to attack, preferring a 'constructivist' view. The formula here shows that we can't divorce experience entirely from a priori thought. I find conceptualism a congenial view.
12. Knowledge Sources / A. A Priori Knowledge / 10. A Priori as Subjective
We have some self-knowledge a priori, such as knowledge of our own existence [Kitcher]
     Full Idea: One can make a powerful case for supposing that some self-knowledge is a priori. At most, if not all, of our waking moments, each of us knows of herself that she exists.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.6)
     A reaction: This is a begrudging concession from a strong opponent to the whole notion of a priori knowledge. I suppose if you ask 'what can be known by thought alone?' then truths about thought ought to be fairly good initial candidates.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / a. Justification issues
A 'warrant' is a process which ensures that a true belief is knowledge [Kitcher]
     Full Idea: A 'warrant' refers to those processes which produce belief 'in the right way': X knows that p iff p, and X believes that p, and X's belief that p was produced by a process which is a warrant for it.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 01.2)
     A reaction: That is, a 'warrant' is a justification which makes a belief acceptable as knowledge. Traditionally, warrants give you certainty (and are, consequently, rather hard to find). I would say, in the modern way, that warrants are agreed by social convention.
13. Knowledge Criteria / A. Justification Problems / 1. Justification / c. Defeasibility
If experiential can defeat a belief, then its justification depends on the defeater's absence [Kitcher, by Casullo]
     Full Idea: According to Kitcher, if experiential evidence can defeat someone's justification for a belief, then their justification depends on the absence of that experiential evidence.
     From: report of Philip Kitcher (The Nature of Mathematical Knowledge [1984], p.89) by Albert Casullo - A Priori Knowledge 2.3
     A reaction: Sounds implausible. There are trillions of possible defeaters for most beliefs, but to say they literally depend on trillions of absences seems a very odd way of seeing the situation
14. Science / D. Explanation / 2. Types of Explanation / j. Explanations by reduction
Six reduction levels: groups, lives, cells, molecules, atoms, particles [Putnam/Oppenheim, by Watson]
     Full Idea: There are six 'reductive levels' in science: social groups, (multicellular) living things, cells, molecules, atoms, and elementary particles.
     From: report of H.Putnam/P.Oppenheim (Unity of Science as a Working Hypothesis [1958]) by Peter Watson - Convergence 10 'Intro'
     A reaction: I have the impression that fields are seen as more fundamental that elementary particles. What is the status of the 'laws' that are supposed to govern these things? What is the status of space and time within this picture?
15. Nature of Minds / C. Capacities of Minds / 6. Idealisation
Idealisation trades off accuracy for simplicity, in varying degrees [Kitcher]
     Full Idea: To idealize is to trade accuracy in describing the actual for simplicity of description, and the compromise can sometimes be struck in different ways.
     From: Philip Kitcher (The Nature of Mathematical Knowledge [1984], 06.5)
     A reaction: There is clearly rather more to idealisation than mere simplicity. A matchstick man is not an ideal man.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
     Full Idea: A concept is 'sortal' if it exemplifies a kind of object. ..In English predication of a sortal concept needs an indefinite article ('an' elm). ..What really constitutes the distinction is that it involves grasping identity for things which fall under it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: This is a key notion, which underlies the claims of 'sortal essentialism' (see David Wiggins).
A concept is only a sortal if it gives genuine identity [Wright,C]
     Full Idea: Before we can conclude that φ expresses a sortal concept, we need to ensure that 'is the same φ as' generates statements of genuine identity rather than of some other equivalence relation.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
     Full Idea: 'Tree' is not a sortal concept under which directions fall since we cannot adequately explain the truth-conditions of any identity statement involving a pair of tree-denoting singular terms by appealing to facts to do with parallelism between lines.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
     A reaction: The idea seems to be that these two fall under 'hedgehog', because that is a respect in which they are identical. I like to notion of explanation as a part of this.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
     Full Idea: The fact that it seems possible to establish a sortal notion of direction by reference to lines and parallelism, discloses tacit commitments to directions in statements about parallelism...There is incoherence in the idea that a line might lack direction.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xviii)
     A reaction: This seems like a slippery slope into a very extravagant platonism about concepts. Are concepts like direction as much a part of the natural world as rivers are? What other undiscovered concepts await us?
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
     Full Idea: A mild version of the verification principle would say that it makes sense to think of someone as understanding an expression only if he is able, by his use of the expression, to give the best possible evidence that he understands it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: That doesn't seem to tell us what understanding actually consists of, and may just be the truism that to demonstrate anything whatsoever will necessarily involve some evidence.
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
     Full Idea: Crispin Wright has argued that Quine's holism is implausible because it is actually incoherent: he claims that Quine's holism cannot provide us with a coherent account of scientific methodology.
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Alexander Miller - Philosophy of Language 4.5
     A reaction: This sounds promising, given my intuitive aversion to linguistic holism, and almost everything to do with Quine. Scientific methodology is not isolated, but spreads into our ordinary (experimental) interactions with the world (e.g. Idea 2461).
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
     Full Idea: If the appearance of reference can be misleading, why cannot an apparent lack of reference be misleading?
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.xi)
     A reaction: A nice simple thought. Analytic philosophy has concerned itself a lot with sentences that seem to refer, but the reference can be analysed away. For me, this takes the question of reference out of the linguistic sphere, which wasn't Wright's plan.
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
     Full Idea: The heart of the problem is Frege's assumption that predicates have Bedeutungen at all; and no reason is at present evident why someone who espouses Frege's notion of object is contrained to make that assumption.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iv)
     A reaction: This seems like a penetrating objection to Frege's view of reference, and presumably supports the Kripke approach.