Combining Philosophers

All the ideas for Crispin Wright, Jacques Lenfant and James Robert Brown

unexpand these ideas     |    start again     |     specify just one area for these philosophers


72 ideas

1. Philosophy / C. History of Philosophy / 1. History of Philosophy
We can only learn from philosophers of the past if we accept the risk of major misrepresentation [Wright,C]
     Full Idea: We can learn from the work of philosophers of other periods only if we are prepared to run the risk of radical and almost inevitable misrepresentation of his thought.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Pref)
     A reaction: This sounds about right, and a motto for my own approach to Aristotle and Leibniz, but I see the effort as more collaborative than this suggests. Professional specialists in older philosophers are a vital part of the team. Read them!
2. Reason / C. Styles of Reason / 1. Dialectic
The best way to understand a philosophical idea is to defend it [Wright,C]
     Full Idea: The most productive way in which to attempt an understanding of any philosophical idea is to work on its defence.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: Very nice. The key point is that this brings greater understanding than working on attacking an idea, which presumably has the dangers of caricature, straw men etc. It is the Socratic insight that dialectic is the route to wisdom.
2. Reason / D. Definition / 2. Aims of Definition
Definitions should be replaceable by primitives, and should not be creative [Brown,JR]
     Full Idea: The standard requirement of definitions involves 'eliminability' (any defined terms must be replaceable by primitives) and 'non-creativity' (proofs of theorems should not depend on the definition).
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: [He cites Russell and Whitehead as a source for this view] This is the austere view of the mathematician or logician. But almost every abstract concept that we use was actually defined in a creative way.
2. Reason / D. Definition / 7. Contextual Definition
The attempt to define numbers by contextual definition has been revived [Wright,C, by Fine,K]
     Full Idea: Frege gave up on the attempt to introduce natural numbers by contextual definition, but the project has been revived by neo-logicists.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction II
4. Formal Logic / F. Set Theory ST / 3. Types of Set / d. Infinite Sets
Set theory says that natural numbers are an actual infinity (to accommodate their powerset) [Brown,JR]
     Full Idea: The set-theory account of infinity doesn't just say that we can keep on counting, but that the natural numbers are an actual infinite set. This is necessary to make sense of the powerset of ω, as the set of all its subsets, and thus even bigger.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: I don't personally find this to be sufficient reason to commit myself to the existence of actual infinities. In fact I have growing doubts about the whole role of set theory in philosophy of mathematics. Shows how much I know.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naďve logical sets
Naďve set theory assumed that there is a set for every condition [Brown,JR]
     Full Idea: In the early versions of set theory ('naďve' set theory), the axiom of comprehension assumed that for any condition there is a set of objects satisfying that condition (so P(x)↔x∈{x:P(x)}), but this led directly to Russell's Paradox.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: How rarely any philosophers state this problem clearly (as Brown does here). This is incredibly important for our understanding of how we classify the world. I'm tempted to just ignore Russell, and treat sets in a natural and sensible way.
Nowadays conditions are only defined on existing sets [Brown,JR]
     Full Idea: In current set theory Russell's Paradox is avoided by saying that a condition can only be defined on already existing sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: A response to Idea 9613. This leaves us with no account of how sets are created, so we have the modern notion that absolutely any grouping of daft things is a perfectly good set. The logicians seem to have hijacked common sense.
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The 'iterative' view says sets start with the empty set and build up [Brown,JR]
     Full Idea: The modern 'iterative' concept of a set starts with the empty set φ (or unsetted individuals), then uses set-forming operations (characterized by the axioms) to build up ever more complex sets.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The only sets in our system will be those we can construct, rather than anything accepted intuitively. It is more about building an elaborate machine that works than about giving a good model of reality.
4. Formal Logic / F. Set Theory ST / 7. Natural Sets
A flock of birds is not a set, because a set cannot go anywhere [Brown,JR]
     Full Idea: Neither a flock of birds nor a pack of wolves is strictly a set, since a flock can fly south, and a pack can be on the prowl, whereas sets go nowhere and menace no one.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: To say that the pack menaced you would presumably be to commit the fallacy of composition. Doesn't the number 64 have properties which its set-theoretic elements (whatever we decide they are) will lack?
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
If a proposition is false, then its negation is true [Brown,JR]
     Full Idea: The law of excluded middle says if a proposition is false, then its negation is true
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Surely that is the best statement of the law? How do you write that down? ¬(P)→¬P? No, because it is a semantic claim, not a syntactic claim, so a truth table captures it. Semantic claims are bigger than syntactic claims.
5. Theory of Logic / F. Referring in Logic / 1. Naming / d. Singular terms
An expression refers if it is a singular term in some true sentences [Wright,C, by Dummett]
     Full Idea: For Wright, an expression refers to an object if it fulfils the 'syntactic role' of a singular term, and if we have fixed the truth-conditions of sentences containing it in such a way that some of them come out true.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.15
     A reaction: Much waffle is written about reference, and it is nice to hear of someone actually trying to state the necessary and sufficient conditions for reference to be successful. So is it possible for 'the round square' to ever refer? '...is impossible to draw'
5. Theory of Logic / K. Features of Logics / 1. Axiomatisation
Axioms are either self-evident, or stipulations, or fallible attempts [Brown,JR]
     Full Idea: The three views one could adopt concerning axioms are that they are self-evident truths, or that they are arbitrary stipulations, or that they are fallible attempts to describe how things are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: Presumably modern platonists like the third version, with others choosing the second, and hardly anyone now having the confidence to embrace the first.
5. Theory of Logic / L. Paradox / 4. Paradoxes in Logic / c. Berry's paradox
Berry's Paradox finds a contradiction in the naming of huge numbers [Brown,JR]
     Full Idea: Berry's Paradox refers to 'the least integer not namable in fewer than nineteen syllables' - a paradox because it has just been named in eighteen syllables.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Apparently George Boolos used this quirky idea as a basis for a new and more streamlined proof of Gödel's Theorem. Don't tell me you don't find that impressive.
6. Mathematics / A. Nature of Mathematics / 1. Mathematics
Mathematics is the only place where we are sure we are right [Brown,JR]
     Full Idea: Mathematics seems to be the one and only place where we humans can be absolutely sure that we got it right.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Apart from death and taxes, that is. Personally I am more certain of the keyboard I am typing on than I am of Pythagoras's Theorem, but the experts seem pretty confident about the number stuff.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / a. Numbers
Number theory aims at the essence of natural numbers, giving their nature, and the epistemology [Wright,C]
     Full Idea: In the Fregean view number theory is a science, aimed at those truths furnished by the essential properties of zero and its successors. The two broad question are then the nature of the objects, and the epistemology of those facts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [compressed] I pounce on the word 'essence' here (my thing). My first question is about the extent to which the natural numbers all have one generic essence, and the extent to which they are individuals (bless their little cotton socks).
'There are two apples' can be expressed logically, with no mention of numbers [Brown,JR]
     Full Idea: 'There are two apples' can be recast as 'x is an apple and y is an apple, and x isn't y, and if z is an apple it is the same as x or y', which makes no appeal at all to mathematics.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: He cites this as the basis of Hartry Field's claim that science can be done without numbers. The logic is ∃x∃y∀z(Ax&Ay&(x¬=y)&(Az→z=x∨z=y)).
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / c. Priority of numbers
One could grasp numbers, and name sizes with them, without grasping ordering [Wright,C]
     Full Idea: Someone could be clear about number identities, and distinguish numbers from other things, without conceiving them as ordered in a progression at all. The point of them would be to make comparisons between sizes of groups.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: Hm. Could you grasp size if you couldn't grasp which of two groups was the bigger? What's the point of noting that I have ten pounds and you only have five, if you don't realise that I have more than you? You could have called them Caesar and Brutus.
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / n. Pi
π is a 'transcendental' number, because it is not the solution of an equation [Brown,JR]
     Full Idea: The number π is not only irrational, but it is also (unlike √2) a 'transcendental' number, because it is not the solution of an algebraic equation.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: So is that a superficial property, or a profound one? Answers on a post card.
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / d. Counting via concepts
Instances of a non-sortal concept can only be counted relative to a sortal concept [Wright,C]
     Full Idea: The invitation to number the instances of some non-sortal concept is intelligible only if it is relativised to a sortal.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: I take this to be an essentially Fregean idea, as when we count the boots when we have decided whether they fall under the concept 'boot' or the concept 'pair'. I also take this to be the traditional question 'what units are you using'?
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Mathematics represents the world through structurally similar models. [Brown,JR]
     Full Idea: Mathematics hooks onto the world by providing representations in the form of structurally similar models.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This is Brown's conclusion. It needs notions of mapping, one-to-one correspondence, and similarity. I like the idea of a 'model', as used in both logic and mathematics, and children's hobbies. The mind is a model-making machine.
6. Mathematics / B. Foundations for Mathematics / 2. Proof in Mathematics
There is no limit to how many ways something can be proved in mathematics [Brown,JR]
     Full Idea: I'm tempted to say that mathematics is so rich that there are indefinitely many ways to prove anything - verbal/symbolic derivations and pictures are just two.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 9)
     A reaction: Brown has been defending pictures as a form of proof. I wonder how long his list would be, if we challenged him to give more details? Some people have very low standards of proof.
Computers played an essential role in proving the four-colour theorem of maps [Brown,JR]
     Full Idea: The celebrity of the famous proof in 1976 of the four-colour theorem of maps is that a computer played an essential role in the proof.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch.10)
     A reaction: The problem concerns the reliability of the computers, but then all the people who check a traditional proof might also be unreliable. Quis custodet custodies?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / d. Peano arithmetic
Wright thinks Hume's Principle is more fundamental to cardinals than the Peano Axioms are [Wright,C, by Heck]
     Full Idea: Wright is claiming that HP is a special sort of truth in some way: it is supposed to be the fundamental truth about cardinality; ...in particular, HP is supposed to be more fundamental, in some sense than the Dedekind-Peano axioms.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Heck notes that although PA can be proved from HP, HP can be proven from PA plus definitions, so direction of proof won't show fundamentality. He adds that Wright thinks HP is 'more illuminating'.
There are five Peano axioms, which can be expressed informally [Wright,C]
     Full Idea: Informally, Peano's axioms are: 0 is a number, numbers have a successor, different numbers have different successors, 0 isn't a successor, properties of 0 which carry over to successors are properties of all numbers.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: Each statement of the famous axioms is slightly different from the others, and I have reworded Wright to fit him in. Since the last one (the 'induction axiom') is about properties, it invites formalization in second-order logic.
Number truths are said to be the consequence of PA - but it needs semantic consequence [Wright,C]
     Full Idea: The intuitive proposal is the essential number theoretic truths are precisely the logical consequences of the Peano axioms, ...but the notion of consequence is a semantic one...and it is not obvious that we possess a semantic notion of the requisite kind.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: (Not sure I understand this, but it is his starting point for rejecting PA as the essence of arithmetic).
What facts underpin the truths of the Peano axioms? [Wright,C]
     Full Idea: We incline to think of the Peano axioms as truths of some sort; so there has to be a philosophical question how we ought to conceive of the nature of the facts which make those statements true.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
     A reaction: [He also asks about how we know the truths]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
Sameness of number is fundamental, not counting, despite children learning that first [Wright,C]
     Full Idea: We teach our children to count, sometimes with no attempt to explain what the sounds mean. Doubtless it is this habit which makes it so natural to think of the number series as fundamental. Frege's insight is that sameness of number is fundamental.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: 'When do children understand number?' rather than when they can recite numerals. I can't make sense of someone being supposed to understand number without a grasp of which numbers are bigger or smaller. To make 13='15' do I add or subtract?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
We derive Hume's Law from Law V, then discard the latter in deriving arithmetic [Wright,C, by Fine,K]
     Full Idea: Wright says the Fregean arithmetic can be broken down into two steps: first, Hume's Law may be derived from Law V; and then, arithmetic may be derived from Hume's Law without any help from Law V.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Kit Fine - The Limits of Abstraction I.4
     A reaction: This sounds odd if Law V is false, but presumably Hume's Law ends up as free-standing. It seems doubtful whether the resulting theory would count as logic.
Frege has a good system if his 'number principle' replaces his basic law V [Wright,C, by Friend]
     Full Idea: Wright proposed removing Frege's basic law V (which led to paradox), replacing it with Frege's 'number principle' (identity of numbers is one-to-one correspondence). The new system is formally consistent, and the Peano axioms can be derived from it.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michčle Friend - Introducing the Philosophy of Mathematics 3.7
     A reaction: The 'number principle' is also called 'Hume's principle'. This idea of Wright's resurrected the project of logicism. The jury is ought again... Frege himself questioned whether the number principle was a part of logic, which would be bad for 'logicism'.
Wright says Hume's Principle is analytic of cardinal numbers, like a definition [Wright,C, by Heck]
     Full Idea: Wright intends the claim that Hume's Principle (HP) embodies an explanation of the concept of number to imply that it is analytic of the concept of cardinal number - so it is an analytic or conceptual truth, much as a definition would be.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Richard G. Heck - Cardinality, Counting and Equinumerosity 1
     A reaction: Boolos is quoted as disagreeing. Wright is claiming a fundamental truth. Boolos says something can fix the character of something (as yellow fixes bananas), but that doesn't make it 'fundamental'. I want to defend 'fundamental'.
It is 1-1 correlation of concepts, and not progression, which distinguishes natural number [Wright,C]
     Full Idea: What is fundamental to possession of any notion of natural number at all is not the knowledge that the numbers may be arrayed in a progression but the knowledge that they are identified and distinguished by reference to 1-1 correlation among concepts.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xv)
     A reaction: My question is 'what is the essence of number?', and my inclination to disagree with Wright on this point suggests that the essence of number is indeed caught in the Dedekind-Peano axioms. But what of infinite numbers?
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / e. Caesar problem
If numbers are extensions, Frege must first solve the Caesar problem for extensions [Wright,C]
     Full Idea: Identifying numbers with extensions will not solve the Caesar problem for numbers unless we have already solved the Caesar problem for extensions.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / b. Mathematics is not set theory
Set theory may represent all of mathematics, without actually being mathematics [Brown,JR]
     Full Idea: Maybe all of mathematics can be represented in set theory, but we should not think that mathematics is set theory. Functions can be represented as order pairs, but perhaps that is not what functions really are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: This seems to me to be the correct view of the situation. If 2 is represented as {φ,{φ}}, why is that asymmetrical? The first digit seems to be the senior and original partner, but how could the digits of 2 differ from one another?
When graphs are defined set-theoretically, that won't cover unlabelled graphs [Brown,JR]
     Full Idea: The basic definition of a graph can be given in set-theoretic terms,...but then what could an unlabelled graph be?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 7)
     A reaction: An unlabelled graph will at least need a verbal description for it to have any significance at all. My daily mood-swings look like this....
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / d. Platonist structuralism
To see a structure in something, we must already have the idea of the structure [Brown,JR]
     Full Idea: Epistemology is a big worry for structuralists. ..To conjecture that something has a particular structure, we must already have conceived of the idea of the structure itself; we cannot be discovering structures by conjecturing them.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: This has to be a crucial area of discussion. Do we have our heads full of abstract structures before we look out of the window? Externalism about the mind is important here; mind and world are not utterly distinct things.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / e. Structuralism critique
Sets seem basic to mathematics, but they don't suit structuralism [Brown,JR]
     Full Idea: Set theory is at the very heart of mathematics; it may even be all there is to mathematics. The notion of set, however, seems quite contrary to the spirit of structuralism.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: So much the worse for sets, I say. You can, for example, define ordinality in terms of sets, but that is no good if ordinality is basic to the nature of numbers, rather than a later addition.
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Number platonism says that natural number is a sortal concept [Wright,C]
     Full Idea: Number-theoretic platonism is just the thesis that natural number is a sortal concept.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: See Crispin Wright on sortals to expound this. An odd way to express platonism, but he is presenting the Fregean version of it.
The irrationality of root-2 was achieved by intellect, not experience [Brown,JR]
     Full Idea: We could not discover irrational numbers by physical measurement. The discovery of the irrationality of the square root of two was an intellectual achievement, not at all connected to sense experience.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 1)
     A reaction: Brown declares himself a platonist, and this is clearly a key argument for him, and rather a good one. Hm. I'll get back to you on this one...
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / a. Mathematical empiricism
We can't use empiricism to dismiss numbers, if numbers are our main evidence against empiricism [Wright,C]
     Full Idea: We may not be able to settle whether some general form of empiricism is correct independently of natural numbers. It might be precisely our grasp of the abstract sortal, natural number, which shows the hypothesis of empiricism to be wrong.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: A nice turning of the tables. In the end only coherence decides these things. You may accept numbers and reject empiricism, and then find you have opened the floodgates for abstracta. Excessive floodgates, or blockages of healthy streams?
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
There is an infinity of mathematical objects, so they can't be physical [Brown,JR]
     Full Idea: A simple argument makes it clear that all mathematical arguments are abstract: there are infinitely many numbers, but only a finite number of physical entities, so most mathematical objects are non-physical. The best assumption is that they all are.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This, it seems to me, is where constructivists score well (cf. Idea 9608). I don't have an infinity of bricks to build an infinity of houses, but I can imagine that the bricks just keep coming if I need them. Imagination is what is unbounded.
Numbers are not abstracted from particulars, because each number is a particular [Brown,JR]
     Full Idea: Numbers are not 'abstract' (in the old sense, of universals abstracted from particulars), since each of the integers is a unique individual, a particular, not a universal.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: An interesting observation which I have not seen directly stated before. Compare Idea 645. I suspect that numbers should be thought of as higher-order abstractions, which don't behave like normal universals (i.e. they're not distributed).
6. Mathematics / C. Sources of Mathematics / 5. Numbers as Adjectival
Treating numbers adjectivally is treating them as quantifiers [Wright,C]
     Full Idea: Treating numbers adjectivally is, in effect, treating the numbers as quantifiers. Frege observes that we can always parse out any apparently adjectival use of a number word in terms of substantival use.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: The immediate response to this is that any substantival use can equally be expressed adjectivally. If you say 'the number of moons of Jupiter is four', I can reply 'oh, you mean Jupiter has four moons'.
Empiricists base numbers on objects, Platonists base them on properties [Brown,JR]
     Full Idea: Perhaps, instead of objects, numbers are associated with properties of objects. Basing them on objects is strongly empiricist and uses first-order logic, whereas the latter view is somewhat Platonistic, and uses second-order logic.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 4)
     A reaction: I don't seem to have a view on this. You can count tomatoes, or you can count red objects, or even 'instances of red'. Numbers refer to whatever can be individuated. No individuation, no arithmetic. (It's also Hume v Armstrong on laws on nature).
6. Mathematics / C. Sources of Mathematics / 6. Logicism / c. Neo-logicism
The Peano Axioms, and infinity of cardinal numbers, are logical consequences of how we explain cardinals [Wright,C]
     Full Idea: The Peano Axioms are logical consequences of a statement constituting the core of an explanation of the notion of cardinal number. The infinity of cardinal numbers emerges as a consequence of the way cardinal number is explained.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xix)
     A reaction: This, along with Idea 13896, nicely summarises the neo-logicist project. I tend to favour a strategy which starts from ordering, rather than identities (1-1), but an attraction is that this approach is closer to counting objects in its basics.
The aim is to follow Frege's strategy to derive the Peano Axioms, but without invoking classes [Wright,C]
     Full Idea: We shall endeavour to see whether it is possible to follow through the strategy adumbrated in 'Grundlagen' for establishing the Peano Axioms without at any stage invoking classes.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: The key idea of neo-logicism. If you can avoid classes entirely, then set theory paradoxes become irrelevant, and classes aren't logic. Philosophers now try to derive the Peano Axioms from all sorts of things. Wright admits infinity is a problem.
Wright has revived Frege's discredited logicism [Wright,C, by Benardete,JA]
     Full Idea: Crispin Wright has reactivated Frege's logistic program, which for decades just about everybody assumed was a lost cause.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by José A. Benardete - Logic and Ontology 3
     A reaction: [This opens Bernadete's section called "Back to Strong Logicism?"]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / d. Logicism critique
Logicism seemed to fail by Russell's paradox, Gödel's theorems, and non-logical axioms [Wright,C]
     Full Idea: Most would cite Russell's paradox, the non-logical character of the axioms which Russell and Whitehead's reconstruction of Frege's enterprise was constrained to employ, and the incompleteness theorems of Gödel, as decisive for logicism's failure.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], Intro)
The standard objections are Russell's Paradox, non-logical axioms, and Gödel's theorems [Wright,C]
     Full Idea: The general view is that Russell's Paradox put paid to Frege's logicist attempt, and Russell's own attempt is vitiated by the non-logical character of his axioms (esp. Infinity), and by the incompleteness theorems of Gödel. But these are bad reasons.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xvi)
     A reaction: Wright's work is the famous modern attempt to reestablish logicism, in the face of these objections.
6. Mathematics / C. Sources of Mathematics / 7. Formalism
For nomalists there are no numbers, only numerals [Brown,JR]
     Full Idea: For the instinctive nominalist in mathematics, there are no numbers, only numerals.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: Maybe. A numeral is a specific sign, sometimes in a specific natural language, so this seems to miss the fact that cardinality etc are features of reality, not just conventions.
Does some mathematics depend entirely on notation? [Brown,JR]
     Full Idea: Are there mathematical properties which can only be discovered using a particular notation?
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: If so, this would seem to be a serious difficulty for platonists. Brown has just been exploring the mathematical theory of knots.
The most brilliant formalist was Hilbert [Brown,JR]
     Full Idea: In mathematics, the most brilliant formalist of all was Hilbert
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: He seems to have developed his fully formalist views later in his career. See Mathematics|Basis of Mathematic|Formalism in our thematic section. Kreisel denies that Hilbert was a true formalist.
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / a. Constructivism
There are no constructions for many highly desirable results in mathematics [Brown,JR]
     Full Idea: Constuctivists link truth with constructive proof, but necessarily lack constructions for many highly desirable results of classical mathematics, making their account of mathematical truth rather implausible.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: The tricky word here is 'desirable', which is an odd criterion for mathematical truth. Nevertheless this sounds like a good objection. How flexible might the concept of a 'construction' be?
Constructivists say p has no value, if the value depends on Goldbach's Conjecture [Brown,JR]
     Full Idea: If we define p as '3 if Goldbach's Conjecture is true' and '5 if Goldbach's Conjecture is false', it seems that p must be a prime number, but, amazingly, constructivists would not accept this without a proof of Goldbach's Conjecture.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 8)
     A reaction: A very similar argument structure to Schrödinger's Cat. This seems (as Brown implies) to be a devastating knock-down argument, but I'll keep an open mind for now.
7. Existence / A. Nature of Existence / 2. Types of Existence
The idea that 'exist' has multiple senses is not coherent [Wright,C]
     Full Idea: I have the gravest doubts whether any coherent account could be given of any multiplicity of senses of 'exist'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.x)
     A reaction: I thoroughly agree with this thought. Do water and wind exist in different senses of 'exist'?
7. Existence / C. Structure of Existence / 7. Abstract/Concrete / a. Abstract/concrete
David's 'Napoleon' is about something concrete and something abstract [Brown,JR]
     Full Idea: David's painting of Napoleon (on a white horse) is a 'picture' of Napoleon, and a 'symbol' of leadership, courage, adventure. It manages to be about something concrete and something abstract.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 3)
     A reaction: This strikes me as the germ of an extremely important idea - that abstraction is involved in our perception of the concrete, so that they are not two entirely separate realms. Seeing 'as' involves abstraction.
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
Singular terms in true sentences must refer to objects; there is no further question about their existence [Wright,C]
     Full Idea: When a class of terms functions as singular terms, and the sentences are true, then those terms genuinely refer. Being singular terms, their reference is to objects. There is no further question whether they really refer, and there are such objects.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iii)
     A reaction: This seems to be a key sentence, because this whole view is standardly called 'platonic', but it certainly isn't platonism as we know it, Jim. Ontology has become an entirely linguistic matter, but do we then have 'sakes' and 'whereaboutses'?
8. Modes of Existence / C. Powers and Dispositions / 4. Powers as Essence
The question is whether force is self-sufficient in bodies, and essential, or dependent on something [Lenfant]
     Full Idea: The whole question is to know if the force to act in bodies is in matter something distinct and independent of everything else that one conceives there. Without that, this force cannot be its essence, and will remain the result of some primitive quality.
     From: Jacques Lenfant (Letters to Leibniz [1693], 1693.11.07), quoted by Daniel Garber - Leibniz:Body,Substance,Monad 8
     A reaction: This challenge to Leibniz highlights the drama of trying to simultaneously arrive at explanations of things, and to decide the nature of essence. Leibniz replied that force is primitive, because it is the 'principle' of behaviour and dispositions.
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
Contextually defined abstract terms genuinely refer to objects [Wright,C, by Dummett]
     Full Idea: Wright says we should accord to contextually defined abstract terms a genuine full-blown reference to objects.
     From: report of Crispin Wright (Frege's Concept of Numbers as Objects [1983]) by Michael Dummett - Frege philosophy of mathematics Ch.18
     A reaction: This is the punch line of Wright's neo-logicist programme. See Idea 9868 for his view of reference. Dummett regards this strong view of contextual definition as 'exorbitant'. Wright's view strikes me as blatantly false.
9. Objects / A. Existence of Objects / 5. Individuation / e. Individuation by kind
Sortal concepts cannot require that things don't survive their loss, because of phase sortals [Wright,C]
     Full Idea: The claim that no concept counts as sortal if an instance of it can survive its loss, runs foul of so-called phase sortals like 'embryo' and 'chrysalis'.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: The point being that those items only fall under that sortal for one phase of their career, and of their identity. I've always thought such claims absurd, and this gives a good reason for my view.
10. Modality / A. Necessity / 6. Logical Necessity
Logical necessity involves a decision about usage, and is non-realist and non-cognitive [Wright,C, by McFetridge]
     Full Idea: Wright espouses a non-realist, indeed non-cognitive account of logical necessity. Crucial to this is the idea that acceptance of a statement as necessary always involves an element of decision (to use it in a necessary way).
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Ian McFetridge - Logical Necessity: Some Issues §3
     A reaction: This has little appeal to me, as I take (unfashionably) the view that that logical necessity is rooted in the behaviour of the actual physical world, with which you can't argue. We test simple logic by making up examples.
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
'Sortal' concepts show kinds, use indefinite articles, and require grasping identities [Wright,C]
     Full Idea: A concept is 'sortal' if it exemplifies a kind of object. ..In English predication of a sortal concept needs an indefinite article ('an' elm). ..What really constitutes the distinction is that it involves grasping identity for things which fall under it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
     A reaction: This is a key notion, which underlies the claims of 'sortal essentialism' (see David Wiggins).
A concept is only a sortal if it gives genuine identity [Wright,C]
     Full Idea: Before we can conclude that φ expresses a sortal concept, we need to ensure that 'is the same φ as' generates statements of genuine identity rather than of some other equivalence relation.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.i)
18. Thought / D. Concepts / 4. Structure of Concepts / b. Analysis of concepts
Entities fall under a sortal concept if they can be used to explain identity statements concerning them [Wright,C]
     Full Idea: 'Tree' is not a sortal concept under which directions fall since we cannot adequately explain the truth-conditions of any identity statement involving a pair of tree-denoting singular terms by appealing to facts to do with parallelism between lines.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 3.xiv)
     A reaction: The idea seems to be that these two fall under 'hedgehog', because that is a respect in which they are identical. I like to notion of explanation as a part of this.
18. Thought / E. Abstraction / 1. Abstract Thought
'Abstract' nowadays means outside space and time, not concrete, not physical [Brown,JR]
     Full Idea: The current usage of 'abstract' simply means outside space and time, not concrete, not physical.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: This is in contrast to Idea 9609 (the older notion of being abstracted). It seems odd that our ancestors had a theory about where such ideas came from, but modern thinkers have no theory at all. Blame Frege for that.
The older sense of 'abstract' is where 'redness' or 'group' is abstracted from particulars [Brown,JR]
     Full Idea: The older sense of 'abstract' applies to universals, where a universal like 'redness' is abstracted from red particulars; it is the one associated with the many. In mathematics, the notion of 'group' or 'vector space' perhaps fits this pattern.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 2)
     A reaction: I am currently investigating whether this 'older' concept is in fact dead. It seems to me that it is needed, as part of cognitive science, and as the crucial link between a materialist metaphysic and the world of ideas.
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
If we can establish directions from lines and parallelism, we were already committed to directions [Wright,C]
     Full Idea: The fact that it seems possible to establish a sortal notion of direction by reference to lines and parallelism, discloses tacit commitments to directions in statements about parallelism...There is incoherence in the idea that a line might lack direction.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 4.xviii)
     A reaction: This seems like a slippery slope into a very extravagant platonism about concepts. Are concepts like direction as much a part of the natural world as rivers are? What other undiscovered concepts await us?
19. Language / A. Nature of Meaning / 5. Meaning as Verification
A milder claim is that understanding requires some evidence of that understanding [Wright,C]
     Full Idea: A mild version of the verification principle would say that it makes sense to think of someone as understanding an expression only if he is able, by his use of the expression, to give the best possible evidence that he understands it.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.vii)
     A reaction: That doesn't seem to tell us what understanding actually consists of, and may just be the truism that to demonstrate anything whatsoever will necessarily involve some evidence.
19. Language / A. Nature of Meaning / 7. Meaning Holism / b. Language holism
Holism cannot give a coherent account of scientific methodology [Wright,C, by Miller,A]
     Full Idea: Crispin Wright has argued that Quine's holism is implausible because it is actually incoherent: he claims that Quine's holism cannot provide us with a coherent account of scientific methodology.
     From: report of Crispin Wright (Inventing Logical Necessity [1986]) by Alexander Miller - Philosophy of Language 4.5
     A reaction: This sounds promising, given my intuitive aversion to linguistic holism, and almost everything to do with Quine. Scientific methodology is not isolated, but spreads into our ordinary (experimental) interactions with the world (e.g. Idea 2461).
19. Language / A. Nature of Meaning / 7. Meaning Holism / c. Meaning by Role
A term can have not only a sense and a reference, but also a 'computational role' [Brown,JR]
     Full Idea: In addition to the sense and reference of term, there is the 'computational' role. The name '2' has a sense (successor of 1) and a reference (the number 2). But the word 'two' has little computational power, Roman 'II' is better, and '2' is a marvel.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 6)
     A reaction: Very interesting, and the point might transfer to natural languages. Synonymous terms carry with them not just different expressive powers, but the capacity to play different roles (e.g. slang and formal terms, gob and mouth).
19. Language / B. Reference / 1. Reference theories
If apparent reference can mislead, then so can apparent lack of reference [Wright,C]
     Full Idea: If the appearance of reference can be misleading, why cannot an apparent lack of reference be misleading?
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 2.xi)
     A reaction: A nice simple thought. Analytic philosophy has concerned itself a lot with sentences that seem to refer, but the reference can be analysed away. For me, this takes the question of reference out of the linguistic sphere, which wasn't Wright's plan.
19. Language / C. Assigning Meanings / 3. Predicates
We can accept Frege's idea of object without assuming that predicates have a reference [Wright,C]
     Full Idea: The heart of the problem is Frege's assumption that predicates have Bedeutungen at all; and no reason is at present evident why someone who espouses Frege's notion of object is contrained to make that assumption.
     From: Crispin Wright (Frege's Concept of Numbers as Objects [1983], 1.iv)
     A reaction: This seems like a penetrating objection to Frege's view of reference, and presumably supports the Kripke approach.
26. Natural Theory / A. Speculations on Nature / 5. Infinite in Nature
Given atomism at one end, and a finite universe at the other, there are no physical infinities [Brown,JR]
     Full Idea: There seem to be no actual infinites in the physical realm. Given the correctness of atomism, there are no infinitely small things, no infinite divisibility. And General Relativity says that the universe is only finitely large.
     From: James Robert Brown (Philosophy of Mathematics [1999], Ch. 5)
     A reaction: If time was infinite, you could travel round in a circle forever. An atom has size, so it has a left, middle and right to it. Etc. They seem to be physical, so we will count those too.