Combining Philosophers

All the ideas for David Fair, Weisberg/Needham/Hendry and Geoffrey Hellman

unexpand these ideas     |    start again     |     specify just one area for these philosophers


18 ideas

6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / a. Structuralism
Structuralism is now common, studying relations, with no regard for what the objects might be [Hellman]
     Full Idea: With developments in modern mathematics, structuralist ideas have become commonplace. We study 'abstract structures', having relations without regard to the objects. As Hilbert famously said, items of furniture would do.
     From: Geoffrey Hellman (Structuralism [2007], §1)
     A reaction: Hilbert is known as a Formalist, which suggests that modern Structuralism is a refined and more naturalist version of the rather austere formalist view. Presumably the sofa can't stand for six, so a structural definition of numbers is needed.
6. Mathematics / B. Foundations for Mathematics / 7. Mathematical Structuralism / c. Nominalist structuralism
Modal structuralism says mathematics studies possible structures, which may or may not be actualised [Hellman, by Friend]
     Full Idea: The modal structuralist thinks of mathematical structures as possibilities. The application of mathematics is just the realisation that a possible structure is actualised. As structures are possibilities, realist ontological problems are avoided.
     From: report of Geoffrey Hellman (Mathematics without Numbers [1989]) by Michèle Friend - Introducing the Philosophy of Mathematics 4.3
     A reaction: Friend criticises this and rejects it, but it is appealing. Mathematics should aim to be applicable to any possible world, and not just the actual one. However, does the actual world 'actualise a mathematical structure'?
Statements of pure mathematics are elliptical for a sort of modal conditional [Hellman, by Chihara]
     Full Idea: Hellman represents statements of pure mathematics as elliptical for modal conditionals of a certain sort.
     From: report of Geoffrey Hellman (Mathematics without Numbers [1989]) by Charles Chihara - A Structural Account of Mathematics 5.3
     A reaction: It's a pity there is such difficulty in understanding conditionals (see Graham Priest on the subject). I intuit a grain of truth in this, though I take maths to reflect the structure of the actual world (with possibilities being part of that world).
Modal structuralism can only judge possibility by 'possible' models [Shapiro on Hellman]
     Full Idea: The usual way to show that a sentence is possible is to show that it has a model, but for Hellman presumably a sentence is possible if it might have a model (or if, possibly, it has a model). It is not clear what this move brings us.
     From: comment on Geoffrey Hellman (Mathematics without Numbers [1989]) by Stewart Shapiro - Philosophy of Mathematics 7.3
     A reaction: I can't assess this, but presumably the possibility of the model must be demonstrated in some way. Aren't all models merely possible, because they are based on axioms, which seem to be no more than possibilities?
Maybe mathematical objects only have structural roles, and no intrinsic nature [Hellman]
     Full Idea: There is the tantalizing possibility that perhaps mathematical objects 'have no nature' at all, beyond their 'structural role'.
     From: Geoffrey Hellman (Structuralism [2007], §1)
     A reaction: This would fit with a number being a function rather than an object. We are interested in what cars do, not the bolts that hold them together? But the ontology of mathematics is quite separate from how you do mathematics.
14. Science / D. Explanation / 2. Types of Explanation / i. Explanations by mechanism
Using mechanisms as explanatory schemes began in chemistry [Weisberg/Needham/Hendry]
     Full Idea: The production of mechanisms as explanatory schemes finds its original home in chemistry.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 5.1)
     A reaction: This is as opposed to mechanisms in biology or neuroscience, which come later.
Thick mechanisms map whole reactions, and thin mechanism chart the steps [Weisberg/Needham/Hendry]
     Full Idea: In chemistry the 'thick' notion of a mechanism traces out positions of electrons and atomic cores, and correlates them with energies, showing the whole reaction. 'Thin' mechanisms focus on a discrete set of intermediate steps.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 5.1)
26. Natural Theory / A. Speculations on Nature / 6. Early Matter Theories / f. Ancient elements
Lavoisier's elements included four types of earth [Weisberg/Needham/Hendry]
     Full Idea: Four types of earth found a place on Lavoisier's list of elements.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.2)
     A reaction: A nice intermediate point between the ancient Greek and the modern view of earth.
26. Natural Theory / C. Causation / 4. Naturalised causation
Science has shown that causal relations are just transfers of energy or momentum [Fair, by Sosa/Tooley]
     Full Idea: Basic causal relations can, as a consequence of our scientific knowledge, be identified with certain physicalistic [sic] relations between objects that can be characterized in terms of transference of either energy or momentum between objects.
     From: report of David Fair (Causation and the Flow of Energy [1979]) by E Sosa / M Tooley - Introduction to 'Causation' §1
     A reaction: Presumably a transfer of momentum is a transfer of energy. If only anyone had the foggiest idea what energy actually is, we'd be doing well. What is energy made of? 'No identity without substance', I say. I like Fair's idea.
Fair shifted his view to talk of counterfactuals about energy flow [Fair, by Schaffer,J]
     Full Idea: Fair, who originated the energy flow view of causation, moved to a view that understands connection in terms of counterfactuals about energy flow.
     From: report of David Fair (Causation and the Flow of Energy [1979]) by Jonathan Schaffer - The Metaphysics of Causation 2.1.2
     A reaction: David Fair was a pupil of David Lewis, the king of the counterfactual view. To me that sounds like a disappointing move, but it is hard to think that a mere flow of energy through space would amount to causation. Cause must work back from an effect.
27. Natural Reality / F. Chemistry / 1. Chemistry
'H2O' just gives the element proportions, not the microstructure [Weisberg/Needham/Hendry]
     Full Idea: 'H2O' is not a description of any microstructure. It is a compositional formula, describing the combining proportions of hydrogen and oxygen to make water.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.5)
Over 100,000,000 compounds have been discovered or synthesised [Weisberg/Needham/Hendry]
     Full Idea: There are well over 100,000,000 chemical compounds that have been discovered or synthesised, all of which have been formally characterised.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.3)
Water molecules dissociate, and form large polymers, explaining its properties [Weisberg/Needham/Hendry]
     Full Idea: Water's structure cannot simply be described as a collection of individual molecules. There is a continual dissociation of H2O molecules into hydrogen and hydroxide ions; they former larger polymeric species, explaining conductivity, melting and boiling.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 4.5)
     A reaction: [compressed] If philosophers try to state the 'essence of water', they had better not be too glib about it.
It is unlikely that chemistry will ever be reduced to physics [Weisberg/Needham/Hendry]
     Full Idea: Most philosophers believe chemistry has not been reduced to physics nor is it likely to be.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6)
     A reaction: [Le Poidevin 2007 argues the opposite] That chemical features are actually metaphysically 'emergent' is a rare view, defended by Hendry. The general view is that the concepts are too different, and approximations render it hopeless.
Quantum theory won't tell us which structure a set of atoms will form [Weisberg/Needham/Hendry]
     Full Idea: Quantum mechanics cannot tell us why a given collection of atoms will adopt one molecular structure (and set of chemical properties) or the other.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6.1)
     A reaction: Presumably it the 'chance' process of how the atoms are thrown together.
For temperature to be mean kinetic energy, a state of equilibrium is also required [Weisberg/Needham/Hendry]
     Full Idea: Having a particular average kinetic energy is only a necessary condition for having a given temperature, not a sufficient one, because only gases at equilibrium have a well-defined temperature.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 6.2)
     A reaction: If you try to pin it all down more precisely, the definition turns out to be circular.
27. Natural Reality / F. Chemistry / 2. Modern Elements
Isotopes (such as those of hydrogen) can vary in their rates of chemical reaction [Weisberg/Needham/Hendry]
     Full Idea: There are chemically salient differences among the isotopes, best illustrated by the three isotopes of hydrogen: protium, deuterium and tritium, which show different rates of reaction, making heavy water poisonous where ordinary water is not.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.4)
     A reaction: [They cite Paul Needham 2008] The point is that the isotopes are the natural kinds, rather than the traditional elements. The view is unorthodox, but clearly makes a good point.
27. Natural Reality / F. Chemistry / 3. Periodic Table
Mendeleev systematised the elements, and also gave an account of their nature [Weisberg/Needham/Hendry]
     Full Idea: In addition to providing the systematization of the elements used in modern chemistry, Mendeleev also gave an account of the nature of the elements which informs contemporary philosophical understanding.
     From: Weisberg/Needham/Hendry (Philosophy of Chemistry [2011], 1.3)