Combining Philosophers

All the ideas for Dennis Whitcomb, Gerhard Gentzen and Augustin-Louis Cauchy

unexpand these ideas     |    start again     |     specify just one area for these philosophers


9 ideas

1. Philosophy / A. Wisdom / 3. Wisdom Deflated
The devil was wise as an angel, and lost no knowledge when he rebelled [Whitcomb]
     Full Idea: The devil is evil but nonetheless wise; he was a wise angel, and through no loss of knowledge, but, rather, through some sort of affective restructuring tried and failed to take over the throne.
     From: Dennis Whitcomb (Wisdom [2011], 'Argument')
     A reaction: ['affective restructuring' indeed! philosophers- don't you love 'em?] To fail at something you try to do suggests a flaw in the wisdom. And the new regime the devil wished to introduce doesn't look like a wise regime. Not convinced.
5. Theory of Logic / A. Overview of Logic / 2. History of Logic
Gentzen introduced a natural deduction calculus (NK) in 1934 [Gentzen, by Read]
     Full Idea: Gentzen introduced a natural deduction calculus (NK) in 1934.
     From: report of Gerhard Gentzen (works [1938]) by Stephen Read - Thinking About Logic Ch.8
5. Theory of Logic / E. Structures of Logic / 2. Logical Connectives / a. Logical connectives
The inferential role of a logical constant constitutes its meaning [Gentzen, by Hanna]
     Full Idea: Gentzen argued that the inferential role of a logical constant constitutes its meaning.
     From: report of Gerhard Gentzen (works [1938]) by Robert Hanna - Rationality and Logic 5.3
     A reaction: Possibly inspired by Wittgenstein's theory of meaning as use? This idea was the target of Prior's famous connective 'tonk', which has the role of implying anything you like, proving sentences which are not logical consequences.
The logical connectives are 'defined' by their introduction rules [Gentzen]
     Full Idea: The introduction rules represent, as it were, the 'definitions' of the symbols concerned, and the elimination rules are no more, in the final analysis, than the consequences of these definitions.
     From: Gerhard Gentzen (works [1938]), quoted by Stephen Read - Thinking About Logic Ch.8
     A reaction: If an introduction-rule (or a truth table) were taken as fixed and beyond dispute, then it would have the status of a definition, since there would be nothing else to appeal to. So is there anything else to appeal to here?
Each logical symbol has an 'introduction' rule to define it, and hence an 'elimination' rule [Gentzen]
     Full Idea: To every logical symbol there belongs precisely one inference figure which 'introduces' the symbol ..and one which 'eliminates' it. The introductions represent the 'definitions' of the symbols concerned, and eliminations are consequences of these.
     From: Gerhard Gentzen (works [1938], II.5.13), quoted by Ian Rumfitt - "Yes" and "No" III
     A reaction: [1935 paper] This passage is famous, in laying down the basics of natural deduction systems of logic (ones using only rules, and avoiding axioms). Rumfitt questions whether Gentzen's account gives the sense of the connectives.
5. Theory of Logic / H. Proof Systems / 4. Natural Deduction
Natural deduction shows the heart of reasoning (and sequent calculus is just a tool) [Gentzen, by Hacking]
     Full Idea: Gentzen thought that his natural deduction gets at the heart of logical reasoning, and used the sequent calculus only as a convenient tool for proving his chief results.
     From: report of Gerhard Gentzen (Investigations into Logical Deduction [1935]) by Ian Hacking - What is Logic? §05
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / k. Infinitesimals
Values that approach zero, becoming less than any quantity, are 'infinitesimals' [Cauchy]
     Full Idea: When the successive absolute values of a variable decrease indefinitely in such a way as to become less than any given quantity, that variable becomes what is called an 'infinitesimal'. Such a variable has zero as its limit.
     From: Augustin-Louis Cauchy (Cours d'Analyse [1821], p.19), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.4
     A reaction: The creator of the important idea of the limit still talked in terms of infinitesimals. In the next generation the limit took over completely.
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / l. Limits
When successive variable values approach a fixed value, that is its 'limit' [Cauchy]
     Full Idea: When the values successively attributed to the same variable approach indefinitely a fixed value, eventually differing from it by as little as one could wish, that fixed value is called the 'limit' of all the others.
     From: Augustin-Louis Cauchy (Cours d'Analyse [1821], p.19), quoted by Philip Kitcher - The Nature of Mathematical Knowledge 10.4
     A reaction: This seems to be a highly significan proposal, because you can now treat that limit as a number, and adds things to it. It opens the door to Cantor's infinities. Is the 'limit' just a fiction?
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
Gentzen proved the consistency of arithmetic from assumptions beyond arithmetic [Gentzen, by Musgrave]
     Full Idea: Gentzen proved the consistency of arithmetic from assumptions which transcend arithmetic.
     From: report of Gerhard Gentzen (works [1938]) by Alan Musgrave - Logicism Revisited §5
     A reaction: This does not contradict Gödel's famous result, but reinforces it. The interesting question is what assumptions Gentzen felt he had to make.